
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

No reason to be SAD?
The Integration of a Secure
Software Development Life Cycle in
OSS Enterprise Web Applications

Thomas Biege
Project Manager IT-Security
SUSE Linux Products GmbH
thomas@suse.de

2011/11/17

mailto:thomas@suse.de

2OWASP

Agenda

 Why do we want secure software?
 SAD: SUSE's secure life cycle approach
 Lessons learned
 What's up next?
 Tools, docs, processes used

3OWASP

Why do we want secure software?

 To safe money, work, time, avoid headache...
choose a pain based on your role.

 And the customer?
 Information Security's biggest challenge is

(industrial) espionage and criminals.
 Secure software is the key element in

Information Security.
 But you need a holistic approach that is

transparent and measurable... and comes
CHEAP!

4OWASP

SAD: SUSE's secure Life Cycle Approach

 … but first some numbers:
Even if you have your maintenance infrastructure in place

and experienced teams are working for you, each update
still costs you several hundreds to thousand USD. *

Each update costs the customer about 600 USD and
therefore makes your product more expensive and less
attractive. **

Fixing a bug late in the life cycle makes it much more
(up to 100x) expensive. ***

Toyota returned about 8 million cars because of broken
breaks, costs 1.93 billion USD :-)

* developer, QA, coordination, build system, storage, etc. more than you would expect probably

** Forbath, Theo; Kalaher, Patrick; O'Grady, Thomas: The Total Cost of Security Patch
Management – A Comparison of Microsoft Windows and Open Source Software.

*** Boehm, B.; The high bosts of software. In: Practical Strategies for Developing Large Software
Systems

5OWASP

SAD: Cost of Fixing Bugs – 1 *

* from: Prof. Dr. Pohl, Helmut; Identifizierung nicht-erkannter
Sicherheitslücken, page 3

6OWASP

SAD: Cost of Fixing Bugs – 2 *

* from: IOActive; Improving RoI by Using an SDL:
http://www.ioactive.com/pdfs/ImprovingRoIByUsingAnSDL.pdf

http://www.ioactive.com/pdfs/ImprovingRoIByUsingAnSDL.pdf

7OWASP

SAD: Cost of Fixing Bugs – 3

8OWASP

SAD: abstract Development Life Cycle

ReleaseTestingDevelopment Maintenance
Design and
Requirements

9OWASP

SAD: secure Development Life Cycle

ReleaseTesting
Develop-
ment Maintenance

Design and
Requirements

Education for
Developers
and Designers
Quality Gates

Threat Modeling
Design Review
Attack Surface
Reduction

Docu-
mentation

Final Review
Quality Gates
Metrics

Security Notes
Security Contact
Hardening Guide

Security Requirements
Code Scanning
Fixing “red” Issues

automated Testing
Fuzzing
Penetration Testing
manual Code
Review Vulnerability

Management
(security-team@)

10OWASP

SAD: Our Process

11OWASP

Lessons learned

 Step 1: Biggest hurdle was to create awareness
but after that and...

 … due to the Agile/Scrum/Kanban development
processes which are based on cooperation,
pragmatism and prioritizing it becomes a fruitful
work

 Step 2: It is always good to implement the most
effective methods (like, threat modeling, static
code analysis, sec. testing, and fuzzing) first

 Step 3: Measurement (SAMM, Attack Surface
Index, Code Defect Ratio per Impact Level)

12OWASP

Lessons learned: Case Study Product X

13OWASP

What's up next?

 Get all teams on board.
 Hand over to development/testing teams.

Static code scanner results and fixing
Security testing

 Agree on measurable results.
 More complete and easy to use tools for testing

and verification.

14OWASP

Tools, Docs, Processes used

 OWASP testing guide
 OWASP testing guide suite:

https://gitorious.org/sectestsuite/websec

 SAMM:
http://www.opensamm.org

 OWASP CLASP:
 https://www.owasp.org/index.php/Category:OWASP_CLASP_Project

 WebScarab:
 https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

 Attack Surface Analyzer:
https://gitorious.org/sectestsuite/asi

 XMLRPC/REST fuzzer:
https://gitorious.org/fuzzer/fuzz-xmlrpc

 Ruby on Rails code scanner:
https://gitorious.org/code-scanner/ror-sec-scanner
https://github.com/openSUSE/scanny

 and more: https://gitorious.org/~thomasbiege

https://gitorious.org/sectestsuite/websec
http://www.opensamm.org/
https://www.owasp.org/index.php/Category:OWASP_CLASP_Project
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
https://gitorious.org/sectestsuite/asi
https://gitorious.org/fuzzer/fuzz-xmlrpc
https://gitorious.org/code-scanner/ror-sec-scanner
https://github.com/openSUSE/scanny
https://gitorious.org/~thomasbiege

15OWASP

Questions?

	OWASP Plan - Strawman
	Title
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15

