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Why do we want secure software?

 To safe money, work, time, avoid headache... 
choose a pain based on your role.

 And the customer?
 Information Security's biggest challenge is 

(industrial) espionage and criminals.
 Secure software is the key element in 

Information Security.
 But you need a holistic approach that is 

transparent and measurable... and comes 
CHEAP!
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SAD: SUSE's secure Life Cycle Approach

 … but first some numbers:
Even if you have your maintenance infrastructure in place 

and experienced teams are working for you, each update 
still costs you several hundreds to thousand USD. *

Each update costs the customer about 600 USD and 
therefore makes your product more expensive and less 
attractive. **

Fixing a bug late in the life cycle makes it much more 
(up to 100x) expensive. ***

Toyota returned about 8 million cars because of broken 
breaks, costs 1.93 billion USD :-)

* developer, QA, coordination, build system, storage, etc. more than you would expect probably

** Forbath, Theo; Kalaher, Patrick; O'Grady, Thomas: The Total Cost of Security Patch
Management – A Comparison of Microsoft Windows and Open Source Software.

*** Boehm, B.; The high bosts of software. In: Practical Strategies for Developing Large Software 
Systems
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SAD: Cost of Fixing Bugs – 1 *

* from: Prof. Dr. Pohl, Helmut; Identifizierung nicht-erkannter 
Sicherheitslücken, page 3
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SAD: Cost of Fixing Bugs – 2 *

* from: IOActive; Improving RoI by Using an SDL:  
http://www.ioactive.com/pdfs/ImprovingRoIByUsingAnSDL.pdf

http://www.ioactive.com/pdfs/ImprovingRoIByUsingAnSDL.pdf
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SAD: Cost of Fixing Bugs – 3
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SAD: abstract Development Life Cycle

ReleaseTestingDevelopment Maintenance
Design and
Requirements
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SAD: secure Development Life Cycle

ReleaseTesting
Develop-
ment Maintenance

Design and
Requirements

Education for
Developers
and Designers
Quality Gates

Threat Modeling
Design Review
Attack Surface
Reduction

Docu-
mentation

Final Review
Quality Gates
Metrics

Security Notes
Security Contact
Hardening Guide

Security Requirements
Code Scanning
Fixing “red” Issues

automated Testing
Fuzzing
Penetration Testing
manual Code 
Review Vulnerability

Management
(security-team@)
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SAD: Our Process
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Lessons learned

 Step 1: Biggest hurdle was to create awareness 
but after that and...

 … due to the Agile/Scrum/Kanban development 
processes which are based on cooperation, 
pragmatism and prioritizing it becomes a fruitful 
work

 Step 2: It is always good to implement the most 
effective methods (like, threat modeling, static 
code analysis, sec. testing, and fuzzing) first

 Step 3: Measurement (SAMM, Attack Surface 
Index, Code Defect Ratio per Impact Level )
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Lessons learned: Case Study Product X
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What's up next?

 Get all teams on board.
 Hand over to development/testing teams.

Static code scanner results and fixing
Security testing

 Agree on measurable results.
 More complete and easy to use tools for testing 

and verification.
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Tools, Docs, Processes used

 OWASP testing guide
 OWASP testing guide suite:

https://gitorious.org/sectestsuite/websec

 SAMM:
http://www.opensamm.org

 OWASP CLASP:
  https://www.owasp.org/index.php/Category:OWASP_CLASP_Project

 WebScarab:
  https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

 Attack Surface Analyzer:
https://gitorious.org/sectestsuite/asi

 XMLRPC/REST fuzzer:
https://gitorious.org/fuzzer/fuzz-xmlrpc

 Ruby on Rails code scanner:
https://gitorious.org/code-scanner/ror-sec-scanner
https://github.com/openSUSE/scanny

 and more: https://gitorious.org/~thomasbiege

https://gitorious.org/sectestsuite/websec
http://www.opensamm.org/
https://www.owasp.org/index.php/Category:OWASP_CLASP_Project
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
https://gitorious.org/sectestsuite/asi
https://gitorious.org/fuzzer/fuzz-xmlrpc
https://gitorious.org/code-scanner/ror-sec-scanner
https://github.com/openSUSE/scanny
https://gitorious.org/~thomasbiege
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Questions?
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