
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

No reason to be SAD?
The Integration of a Secure
Software Development Life Cycle in
OSS Enterprise Web Applications

Thomas Biege
Project Manager IT-Security
SUSE Linux Products GmbH
thomas@suse.de

2011/11/17

mailto:thomas@suse.de

2OWASP

Agenda

 Why do we want secure software?
 SAD: SUSE's secure life cycle approach
 Lessons learned
 What's up next?
 Tools, docs, processes used

3OWASP

Why do we want secure software?

 To safe money, work, time, avoid headache...
choose a pain based on your role.

 And the customer?
 Information Security's biggest challenge is

(industrial) espionage and criminals.
 Secure software is the key element in

Information Security.
 But you need a holistic approach that is

transparent and measurable... and comes
CHEAP!

4OWASP

SAD: SUSE's secure Life Cycle Approach

 … but first some numbers:
Even if you have your maintenance infrastructure in place

and experienced teams are working for you, each update
still costs you several hundreds to thousand USD. *

Each update costs the customer about 600 USD and
therefore makes your product more expensive and less
attractive. **

Fixing a bug late in the life cycle makes it much more
(up to 100x) expensive. ***

Toyota returned about 8 million cars because of broken
breaks, costs 1.93 billion USD :-)

* developer, QA, coordination, build system, storage, etc. more than you would expect probably

** Forbath, Theo; Kalaher, Patrick; O'Grady, Thomas: The Total Cost of Security Patch
Management – A Comparison of Microsoft Windows and Open Source Software.

*** Boehm, B.; The high bosts of software. In: Practical Strategies for Developing Large Software
Systems

5OWASP

SAD: Cost of Fixing Bugs – 1 *

* from: Prof. Dr. Pohl, Helmut; Identifizierung nicht-erkannter
Sicherheitslücken, page 3

6OWASP

SAD: Cost of Fixing Bugs – 2 *

* from: IOActive; Improving RoI by Using an SDL:
http://www.ioactive.com/pdfs/ImprovingRoIByUsingAnSDL.pdf

http://www.ioactive.com/pdfs/ImprovingRoIByUsingAnSDL.pdf

7OWASP

SAD: Cost of Fixing Bugs – 3

8OWASP

SAD: abstract Development Life Cycle

ReleaseTestingDevelopment Maintenance
Design and
Requirements

9OWASP

SAD: secure Development Life Cycle

ReleaseTesting
Develop-
ment Maintenance

Design and
Requirements

Education for
Developers
and Designers
Quality Gates

Threat Modeling
Design Review
Attack Surface
Reduction

Docu-
mentation

Final Review
Quality Gates
Metrics

Security Notes
Security Contact
Hardening Guide

Security Requirements
Code Scanning
Fixing “red” Issues

automated Testing
Fuzzing
Penetration Testing
manual Code
Review Vulnerability

Management
(security-team@)

10OWASP

SAD: Our Process

11OWASP

Lessons learned

 Step 1: Biggest hurdle was to create awareness
but after that and...

 … due to the Agile/Scrum/Kanban development
processes which are based on cooperation,
pragmatism and prioritizing it becomes a fruitful
work

 Step 2: It is always good to implement the most
effective methods (like, threat modeling, static
code analysis, sec. testing, and fuzzing) first

 Step 3: Measurement (SAMM, Attack Surface
Index, Code Defect Ratio per Impact Level)

12OWASP

Lessons learned: Case Study Product X

13OWASP

What's up next?

 Get all teams on board.
 Hand over to development/testing teams.

Static code scanner results and fixing
Security testing

 Agree on measurable results.
 More complete and easy to use tools for testing

and verification.

14OWASP

Tools, Docs, Processes used

 OWASP testing guide
 OWASP testing guide suite:

https://gitorious.org/sectestsuite/websec

 SAMM:
http://www.opensamm.org

 OWASP CLASP:
 https://www.owasp.org/index.php/Category:OWASP_CLASP_Project

 WebScarab:
 https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

 Attack Surface Analyzer:
https://gitorious.org/sectestsuite/asi

 XMLRPC/REST fuzzer:
https://gitorious.org/fuzzer/fuzz-xmlrpc

 Ruby on Rails code scanner:
https://gitorious.org/code-scanner/ror-sec-scanner
https://github.com/openSUSE/scanny

 and more: https://gitorious.org/~thomasbiege

https://gitorious.org/sectestsuite/websec
http://www.opensamm.org/
https://www.owasp.org/index.php/Category:OWASP_CLASP_Project
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
https://gitorious.org/sectestsuite/asi
https://gitorious.org/fuzzer/fuzz-xmlrpc
https://gitorious.org/code-scanner/ror-sec-scanner
https://github.com/openSUSE/scanny
https://gitorious.org/~thomasbiege

15OWASP

Questions?

	OWASP Plan - Strawman
	Title
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15

