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Why do we want secure software?

B To safe money, work, time, avoid headache...
choose a pain based on your role.

B And the customer?

B Information Security's biggest challenge is
(industrial) espionage and criminals.

B Secure software is the key element in
Information Security.

B But you need a holistic approach that is

transparent and measurable... and comes
CHEAP!




SAD: SUSE's secure Life Cycle Approach

B butfirst some numbers:

» Even if you have your maintenance infrastructure in place
and experienced teams are working for you, each update
still costs you several hundreds to thousand USD. *

» Each update costs the customer about 600 USD and
therefore makes your product more expensive and less
attractive, **

» Fixing a bug late in the life cycle makes it much more
(up to 100x) expensive, ***

» Toyota returned about 8 million cars because of broken
breaks, costs 1.93 billion USD :-)

* developer, QA, coordination, build system, storage, etc. more than you would expect probably

** Forbath, Theo; Kalaher, Patrick; O'Grady, Thomas: The Total Cost of Security Patch
Management — A Comparison of Microsoft Windows and Open Source Software.
KKk

Boehm, B.; The high bosts of software. In: Practical Strategies for Developing Large Software e
Systems 4




SAD: Cost of Fixing Bugs - 1 *

Costs
*
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Abb. 1: Kosten der Fehlerbehebung in den Software-Entwicklungsphasen

* from: Prof. Dr. Pohl, Helmut; Identifizierung nicht-erkannter
Sicherheitsliicken, page 3 OWASP e 5




SAD: Cost of Fixing Bugs - 2 *
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Figure 3: The cost of security

A 2002 study illustrates this point perfectly: the U.S. Department of Commerce National
Institute of Standards and Technology concluded that software errors (or bugs) cost the
U.S. economy $59 billion annually, or about 0.6% of the gross domestic product. Microsoft
estimates that their average cost to fix a bug after product release is $250,000. Of course,
your organization's costs likely will be much lower than Microsoft's, but it is worth
considering how much effort is required to regress and compatibility test every change.

* from: 10Active; Improving Rol by Using an SDL.
http://www.ioactive.com/pdfs/ImprovingRolByUsingAnSDL.pdf OWASP e 6



http://www.ioactive.com/pdfs/ImprovingRoIByUsingAnSDL.pdf

SAD: Cost of Fixing Bugs - 3
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SAD: abstract Development Life Cycle

Design and N
Requirements Development Testing Release Maintenance




SAD: secure Development Life Cycle
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SAD: Our Process

#1 Get in touch

- v,

#3 Security - #2 SAMM Level
Policy #4 Risk Assessment Definition
- - -
v — - _|#2 Attack Surface
#5 FATE: Security s . Index Definition
; ~
Requirements | _ - - ¢
Vo~ — #2 Code Scanner
- . — ] Impact Ratio
#%%?Egggﬁfigg - — Definition
pointing to SAD wiki I

*Entering Development Phase

#8 Update+Verify+Discuss
Weekly Code Scan

#13 Update yourself‘

#9 Test new Release

#11 BZ: File new Bugs
/ y

- #10 BZ,FATE: Verify
#12 Update+Discuss Sec. Requirements,
Risk Assessment - Bug Fixes and
+ Fate/BNC overview Doc Thresholds from #2
I

\

| #14 Update: SAMM Levels |
|

Entering Maintenance Phase

‘ #15 Input to Go/NoGo Meeting ‘
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Lessons learned

B Step 1: Biggest hurdle was to create awareness
but after that and...

B . due to the Agile/Scrum/Kanban development
processes which are based on cooperation,
pragmatism and prioritizing it becomes a fruitful
work

B Step 2: It is always good to implement the most
effective methods (like, threat modeling, static
code analysis, sec. testing, and fuzzing) first

B Step 3: Measurement (SAMM, Attack Surface
Index, Code Defect Ratio per Impact Level )

011




Lessons learned: Case Study Product X

RoR Scanner Statistics for sims
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What's up next?

B Get all teams on board.

B Hand over to development/testing teams.
» Static code scanner results and fixing
» Security testing

B Agree on measurable results.

B More complete and easy to use tools for testing
and verification.

owase @) 13




Tools, Docs, Processes used

B OWASP testing guide
B OWASP testing guide suite:
» https://gitorious.org/sectestsuite/websec
B SAMM:
» http://www.opensamm.org
B OWASP CLASP:
> https://www.owasp.org/index.php/Category:OWASP_CLASP_Project
B \WebScarab:
> https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
B Attack Surface Analyzer:
» https://gitorious.org/sectestsuite/asi
B XMLRPC/REST fuzzer:
» https://gitorious.org/fuzzer/fuzz-xmlrpc

B Ruby on Rails code scanner:
P https://gitorious.org/code-scanner/ror-sec-scanner
» https://github.com/openSUSE/scanny

B and more: https://gitorious.org/~thomasbiege

owase @) 14



https://gitorious.org/sectestsuite/websec
http://www.opensamm.org/
https://www.owasp.org/index.php/Category:OWASP_CLASP_Project
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
https://gitorious.org/sectestsuite/asi
https://gitorious.org/fuzzer/fuzz-xmlrpc
https://gitorious.org/code-scanner/ror-sec-scanner
https://github.com/openSUSE/scanny
https://gitorious.org/~thomasbiege

Questions?
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