No reason to be SAD?

The Integration of a Secure
Software Development Life Cycle In
OSS Enterprise Web Applications

Thomas Biege

Project Manager IT-Security
SUSE Linux Products GmbH
thomas@suse.de

OWASP

2011/11/17

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

http://www.owasp.org

mailto:thomas@suse.de

Agenda

B \Why do we want secure software?

B SAD: SUSE's secure life cycle approach
B | essons learned

B \What's up next?

B Tools, docs, processes used

Why do we want secure software?

B To safe money, work, time, avoid headache...
choose a pain based on your role.

B And the customer?

B Information Security's biggest challenge is
(industrial) espionage and criminals.

B Secure software is the key element in
Information Security.

B But you need a holistic approach that is

transparent and measurable... and comes
CHEAP!

SAD: SUSE's secure Life Cycle Approach

B butfirst some numbers:

» Even if you have your maintenance infrastructure in place
and experienced teams are working for you, each update
still costs you several hundreds to thousand USD. *

» Each update costs the customer about 600 USD and
therefore makes your product more expensive and less
attractive, **

» Fixing a bug late in the life cycle makes it much more
(up to 100x) expensive, ***

» Toyota returned about 8 million cars because of broken
breaks, costs 1.93 billion USD :-)

* developer, QA, coordination, build system, storage, etc. more than you would expect probably

** Forbath, Theo; Kalaher, Patrick; O'Grady, Thomas: The Total Cost of Security Patch
Management — A Comparison of Microsoft Windows and Open Source Software.
KKk

Boehm, B.; The high bosts of software. In: Practical Strategies for Developing Large Software e
Systems 4

SAD: Cost of Fixing Bugs - 1 *

Costs
*

35 x

Application in the Field

6 x :
1x
Threat Modeling Static Analysis Fuzzing
Phase
Requirements / Design Implementation Verification / Testing Release

Abb. 1: Kosten der Fehlerbehebung in den Software-Entwicklungsphasen

* from: Prof. Dr. Pohl, Helmut; Identifizierung nicht-erkannter
Sicherheitsliicken, page 3 OWASP e 5

SAD: Cost of Fixing Bugs - 2 *

80
i0
60
S0
40
30
20
10

Cost Design Devel opment Testing Production

Time I —

Figure 3: The cost of security

A 2002 study illustrates this point perfectly: the U.S. Department of Commerce National
Institute of Standards and Technology concluded that software errors (or bugs) cost the
U.S. economy $59 billion annually, or about 0.6% of the gross domestic product. Microsoft
estimates that their average cost to fix a bug after product release is $250,000. Of course,
your organization's costs likely will be much lower than Microsoft's, but it is worth
considering how much effort is required to regress and compatibility test every change.

* from: 10Active; Improving Rol by Using an SDL.
http://www.ioactive.com/pdfs/ImprovingRolByUsingAnSDL.pdf OWASP e 6

http://www.ioactive.com/pdfs/ImprovingRoIByUsingAnSDL.pdf

SAD: Cost of Fixing Bugs - 3

F16.000

&5%

o, Cefacts
introducead

i tris phass

U Defects
found in

this phasa

& Cosl to
rapair defact
8250 in tris phass

§1.000

sbing jo afeuanag

Coding it Funetion Figld Past
Test Te=st Tast Relkass

Sowree Apoked Sofhware Weasurament, Capers Jones, 106

SAD: abstract Development Life Cycle

Design and N
Requirements Development Testing Release Maintenance

SAD: secure Development Life Cycle

_—

Design and

T

Develop- Docu-
Requirements ment mentation Testing Release Maintenance
| | | | |
l \ , ~ : X ~, Final Review
Threat Modeling ~ Security Notes Quality Gates |
\ Design Review Security Contact Metrics /
\ Attack Surface \ Hardening Guide ‘
Reduction I _ |
N automated Testing
| Security Requirements Fuzzing
_ Code Scanning Penetration Testing
Education for Fixing “red” Issues manual Code |
Developers Review .
and Designers Vulnerability
Quality Gates Management

(security-team@)

owase @

SAD: Our Process

#1 Get in touch

- v,

#3 Security - #2 SAMM Level
Policy #4 Risk Assessment Definition
- - -
v — - _|#2 Attack Surface
#5 FATE: Security s . Index Definition
; ~
Requirements | _ - - ¢
Vo~ — #2 Code Scanner
- . —] Impact Ratio
#%%?Egggﬁfigg - — Definition
pointing to SAD wiki I

*Entering Development Phase

#8 Update+Verify+Discuss
Weekly Code Scan

#13 Update yourself‘

#9 Test new Release

#11 BZ: File new Bugs
/ y

- #10 BZ,FATE: Verify
#12 Update+Discuss Sec. Requirements,
Risk Assessment - Bug Fixes and
+ Fate/BNC overview Doc Thresholds from #2
I

\

| #14 Update: SAMM Levels |
|

Entering Maintenance Phase

‘ #15 Input to Go/NoGo Meeting ‘

OWASP e 10

Lessons learned

B Step 1: Biggest hurdle was to create awareness
but after that and...

B . due to the Agile/Scrum/Kanban development
processes which are based on cooperation,
pragmatism and prioritizing it becomes a fruitful
work

B Step 2: It is always good to implement the most
effective methods (like, threat modeling, static
code analysis, sec. testing, and fuzzing) first

B Step 3: Measurement (SAMM, Attack Surface
Index, Code Defect Ratio per Impact Level)

011

Lessons learned: Case Study Product X

RoR Scanner Statistics for sims

% m hight ,
=1 medim+ Maturity Level
I I C— low+
30 | -3 info+
Strategy & Metrics pr———————
2 | I] ay
8 Policy & Compliance
7 n
2 ol HE i Education & Guidance prEETETEEEEE—
s}
B Threat Assessment e ————
0
S 15 F | . Security Requirements - p e ——————
gou Secure Architecture p— B before
T O0FHH . Design Review s W after
ne Code Review p—
5 i Security Testing p———
ﬁ ﬁ ﬁ ﬁ ﬁ ﬁ ﬁ ﬁ Inerability Management [——
0 i ing [
MR NNRNORNRNNRNNNNRNNRONORDNNR NN Environment Hardening
B88238885¢88582328588¢8¢.8888 .
L i N N N (e)perat|0n3| Enablement _
0000000 OO0O0O0ODODDDDOOO0DO0ODO
= = = N NN MNMNWWLWSsE ERRELEOO0OO0OO0OOO
MM OOoaNosahooahNvoo VO 0 05 1 15 2 25 3
oo b0 =0W04h=00=00N0MCOWOO~NWO-N] ¥ '

Level

L —r—

O awy. mitigated Risk
0% 20% 40% 60% 80% 100%

OWASP e 12

What's up next?

B Get all teams on board.

B Hand over to development/testing teams.
» Static code scanner results and fixing
» Security testing

B Agree on measurable results.

B More complete and easy to use tools for testing
and verification.

owase @) 13

Tools, Docs, Processes used

B OWASP testing guide
B OWASP testing guide suite:
» https://gitorious.org/sectestsuite/websec
B SAMM:
» http://www.opensamm.org
B OWASP CLASP:
> https://www.owasp.org/index.php/Category:OWASP_CLASP_Project
B \WebScarab:
> https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
B Attack Surface Analyzer:
» https://gitorious.org/sectestsuite/asi
B XMLRPC/REST fuzzer:
» https://gitorious.org/fuzzer/fuzz-xmlrpc

B Ruby on Rails code scanner:
P https://gitorious.org/code-scanner/ror-sec-scanner
» https://github.com/openSUSE/scanny

B and more: https://gitorious.org/~thomasbiege

owase @) 14

https://gitorious.org/sectestsuite/websec
http://www.opensamm.org/
https://www.owasp.org/index.php/Category:OWASP_CLASP_Project
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
https://gitorious.org/sectestsuite/asi
https://gitorious.org/fuzzer/fuzz-xmlrpc
https://gitorious.org/code-scanner/ror-sec-scanner
https://github.com/openSUSE/scanny
https://gitorious.org/~thomasbiege

Questions?

	OWASP Plan - Strawman
	Title
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15

