: ———
-

\

!
;8

gin

O
|

!
!

b

l
\
g

!
1

!

Secure

i
i
xS

Build

0

i L
&}
a2 ..
L tDES
' -
Ly TS
g l..‘
| P @

L

..-
e
SR G T

Pre-Login
_ogin Page
_ogin Redirect
_ogged In

_og Out

Pre-Login

Users get to the site in many

ways: Search engine, Bookmarks, Links
from emails, Direct URL entry, iframes
from other sites.

Reqguest/Response model.

Users shouldn't be able to complete
most actions before logging in, but they
may be able to begin actions such as
adding items to a cart or setting up a
session.

Account Creation

Password Reset

B BB S e e e s

REQUEST

GET /HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (X11; U; Lin...)

Accept: text/html,application/xhtml+xml,applica...
Keep-Alive: 115

RESPONSE
HTTP/1.1 200 OK

Date: Fri, 29 Apr 2011 17:12:13 GMT

Set-Cookie: skin=noskin; path=/; domain=.example.com, expires=Fri, 29-Apr-
2011 17:12:13 GMT

Content-Type: text/html; charset=1S0O-8859-1

Set-cookie: session-id=176-9381406-6210335; path=/; domain=.example.com;
expires=Tue Jan 01 08:00:01 2036 GMT

Content-Length: 156046

<html>
... web page

A" A S L S Ga CE GRS

Login Page

« Users can get to the login page by:
o Clicking on the login link on the site
or from an email or another site.
o Attempting to go to a logged in page

— Pre-Login without being logged in.

— Login Page o Making a request to a logged in page
— Login Zzedlrect after the session has expired.

—~ _ggggutln » The login page needs to know where to

send the user after successful login.

 |nput can include a username,
password, pre-login cookie, anti-CSRF
token, CAPTCHA, and even a second
factor such as an RSA token.

— -

e —y ——p —] - . s

Clicked on Login link
Get

_—1 Login
Form
[]\ Lagh_j

Form

Redirected to Login
Logged

1 — | inarea
(R H'ITE]

302

HTTP/1.1 302 Found

Get | Location: https://example.com/login/
S Login
2 Form
Login j
Form

ﬁ_v—f > > __7____'_ - ~ —- - - - - —x -~ -y

1. Request to Logged in Page:
GET mail/inbox.php?email_id=11&action=mark_as read HTTP/1.1

2. 302 Response containing

Set-cookie: go_to=/mail/inbox.php?email_id=11&action=mark_as_read
Location: https://example.com/login.php

3. Request to https://example.com/login.php

4. Response containing Login page:

HTTP/1.1 200 OK

... Other Headers

<html|>

... Login Form

5. Request containing credentials:

POST /login.php HTTP/1.1

Host: example.com

Cookie: anonymous_session_1d=ff5f109f765del12d3a83ce578e9d44ef; go to=/mail
/inbox.php?email_id=11&action=mark_as_read

username=bené&password=myrealpassword&csrf token=6108d48838...

P —— v - a - - -

Login Redirect

« Upon successful verification of the
user's credentials, a redirection
response which contains a Set-Cookie

I header is returned.
ARl | » Usually an HTTP 302 Found

= _oglir;] PRagdeir : response with a Location header.
T 9 Ien S o Sometimes a webpage Is returned
3 _ggggut which includes a javascript or meta

tag redirect.
* This new cookie Is the logged In
session cookie.

B BB S e e e s

1. Response from successful login:

HTTP/1.1 302 Found
Set-Cookie: session_1d=617372ea63040f780b16dd992122e170; path=/; secure;

HttpOnly
Location: https://example.com/mail/inbox.php?email id=11&action=mark_as read

2. Request to Location value:

GET /mail/inbox.php?email_id=11&action=mark as read HTTP/1.1
Host: example.com

Cookie: session id=617372ea63040f780b16dd992122e170

3. Response containing logged in page:

HTTP/1.1 200 OK
... Other Headers

<html|>
... Logged in Page

e ————

Pre-Login
_ogin Page
_ogin Redirect
_ogged In
_og Out

Logged In

Now that the user is logged in, they can
take sensitive actions and look at
sensitive data.

The user stays logged in because the
browser adds the Cookie header to
every request (with the appropriate
domain, path, flags, etc.).

Often users have to fill out long forms
that take longer than the inactivity
logout period.

Users may have multiple tabs open
which makes it difficult to impose an
order on their actions.

— -

e —y ——p —] - . s

REQUEST

POST /payroll/directdeposit.php HTTP/1.1

Host: www.example.com

User-Agent: Mozilla/5.0 (X11; U; Linux i1686; en-US; rv:1.9.2.16)
Gecko/20110323 Ubuntu/10.04 (lucid) Firefox/3.6.16

Cookie: session _1d=617372ea63040f780b16dd992122e170

routing_nbr=111111111&acct nbr=123412341234&csrf token=c1446f6dal664
50281¢91108551ae9hb6

RESPONSE

HTTP/1.1 200 OK

Pragma: no-cache

Content-Length: 2150

Keep-Alive: timeout=15, max=100
Content-Type: text/html; charset=is0-8859-1

<html>
... web page

e ————

Log Out

 How do users log out:
o They click on the logout link.
o Their session expires due to inactivity
or absolute timeout.

— Pre-Login > They complete an action.

& D0l —age o> They navigate to a non-logged-in

— Login Zzedlrect section of the site.

= _g%ggutm « |f the user's session didn't expire, they

get a response which contains a Set-
Cookie header that expires the logged
In cookie and then redirects the user.

« Otherwise they get redirected to the
login page.

e —y ——p —] - . s

Logout

— URL
— G B TF—— Clicked on

e Logout Link
Get
- Default
Page \/‘E
(] \ Default j
Page
Logged
— | in Page
-
(R A H'I‘I'>E]
302
Logged out
due to LGE_t
= = odin
inactivity = pose \/‘E
n] Login ij

Page

: : . ' 4 - { a —p 4 " g ™ - Al S —

ey -

Attack Goals

e Bypass Login

* Login as another user

» Force logged in users to
take actions

« Get logged In users'
iInformation

 Affect pre-login actions
that affect logged Iin
actions

Get users to login to a
known session or account

Get va
Get va
Get va

10
10

10

usernames
user passwords
user emaill

addresses
| ockout users

Pre-Login

e SQL Injection - same database
« XSS as a Social Engineering vector
« Carry over attacks:
o Cookie attacks: XSS, lack of SSL,
Header Injection, token prediction
o Session via URL token (no cookies)

— Pre-Login
— Login Page

— Login Redirect » CSRF and Clickjacking
— Logged In

— Log Out

« User Enumeration:
o Password Reset
o Account Creation
o Login Form
* |nadequate SSL Coverage
« Combination XSS with CSRF to the
logged in section to get sensitive data.

—'Tf - aa A 4 < = "

e

Login Page

e SQL Injection to bypass verification
« XSS as a key logger

« User Enumeration

« Password Bruteforcing

Pre—_Logln * SQL Injection for password gathering
EO R0 ShinCERE

_ogin Redirect i e

‘ggggstm o Stored data

o | was framed!
* |nadequate SSL
 Account Lockout

Login Redirect

« Header Injection: Location header
e Session Fixation
* Predictable session token
. * Forced redirection
B atogl o Off site (Referer header)
= DOl Bage 5 OSRF
— Login Redirect , Gotta have the SSL

— Logged In - Javascript or meta tag redirect XSS
— Log Out

Logged In

« XSS framework for full control (BeEF)

« XSS for session token capture
« SQL Injection via CSRF

-l « CSRF and Clickjacking
re- OFgln « |nadequate SSL coverage
-0gin Fage « Authentication bypass

e F;eldlrect » Disclosure of URL parameters (Referer)
—Og%et 4 . AJAX hijacking
S » Force Logout

. #orded redirection

f . Header injection: Location
Sessmn reuse / Inadequate log out

: {_ pSRF Iogout |

i !
| :

s AL - 1 38 4 SR TN S i A .‘:

!

3 i i
k XL :
=2 RIS | | ‘
. = e 1" —r T Dl 53
B30 e X CETTRE |) : \
<3 ST Treiitpea AL 4 -y -— s PR RS SR R
w ¥] > s_— ". -*..' ‘.t [| e T s oy

Conclusions

Login and Authentication can't be easily segregated from the
applications that use it.

Pre-Login, subdomains, parent domains, and sister domains
all can affect the Login and Authentication functionality.
Pre-Login must either have no session or be under SSL.
User enumeration protection applies to the Login page as
well as Account Creation and Password Reset.

XSS and SQL Injection are pretty much Game Over.
Stopping bruteforcing of passwords is difficult, so make the
passwords difficult to bruteforce. Password Rules.
Javascript redirects can lead to DOM based XSS.

Update the session cookie during the redirection step.

Use Cryptography for security related tokens.

Conclusions (cont.)

Watch what goes into t

ne URL. This can get sent off-site in

the Referer HTTP header.

Force users to use coo
A framework or system

Kles. There's no excuse anymore.
atic approach should be taken for

Authentication, HTML output, SQL, and CSRF protection.
AJAX may require CSRF protection for GET requests, too.
EXpiring a session cookie is not a sufficient logout
procedure.

‘.

e A A L L G e G S

ey

f|ﬂ '

