
Virtual Patching: Does it work?
OWASP NZ Day | 22 Feb 2019

Kirk Jackson | @kirkj
lmstfu.com | @LetMeSecureThat

This talk is not about RedShield!
“We are the world's first web application
shielding-with-a-service cybersecurity

company.”

● RedShield don’t use ModSecurity or
node.js

● We wrap a service around virtual
patching

● How does virtual patching work?
● Can it be done “DIY”?

Not an
advertisement!

Building a secure web app

SDLC

Production

Web Server

App

Deployment

RASP

AV

Config
Agent

IDS DLP

IAM

P
ro

xy
W

eb
 a

pp
 fi

re
w

al
l

SIEM

Cloud workflow
protection

Identity
Governance

Configuration
Management

Configuration
Review

Vulnerability Scan
Penetration

Testing

Monitoring

App Release
Automation

Fi
re

w
al

l
Threat

modelling

Security
Training

Security
Reviews

SAST

DAST

Security
Testing

IAST
Patch

Management

OS Hardening

File integrity
monitoring

Standard Operating
Procedures

Policies

Attacks

Attacks

SDLC

Production

Web Server

App

Deployment

RASP

AV

Config
Agent

IDS DLP

IAM

P
ro

xy
W

eb
 a

pp
 fi

re
w

al
l

SIEM

Cloud workflow
protection

Identity
Governance

Configuration
Management

Configuration
Review

Vulnerability Scan
Penetration

Testing

Monitoring

App Release
Automation

Fi
re

w
al

l
Threat

modelling

Security
Training

Security
Reviews

SAST

DAST

Security
Testing

IAST

Building it securely

Verifying it’s secure

Patch
Management

OS Hardening

File integrity
monitoring

Hosting it securely

Standard Operating
Procedures

Policies

Approximate cost:
$4.2m

Building a secure web app

✓

But what if there are bugs?

Production

Web Server

App

RASP

P
ro

xy
W

eb
 a

pp
 fi

re
w

al
l

Penetration
Testing

Fi
re

w
al

l

Attacks

The WAF might stop
signature-based attacks

But what if there are bugs?
business logic

^

SDLC

Production

Web Server

App

Deployment

RASP

P
ro

xy
W

eb
 a

pp
 fi

re
w

al
l

Penetration
Testing

App Release
Automation

Fi
re

w
al

l
Threat

modelling

Security
Training

Security
Reviews

SAST

DAST

Security
Testing

IAST

Attacks

Business logic weaknesses
will need a new app release

The cost of releasing updated software

● Divert team from current projects
● Branch, merge, build, test
● Release management, change review board
● Release

● Timeframe from discovery to release?
● Do you even have the source code?
● What “process” do you need to shortcut?

Can we patch the issues
without touching the
underlying website?

Production

Web Server

App

P
ro

xy
V

irt
ua

l P
at

ch
in

g

Penetration
Testing

Fi
re

w
al

l

Attacks

Replace the “WAF” with a
more capable layer…

“Let me secure that for you!”

Virtual Patching
prevent the exploitation
of a known vulnerability“ ”

Virtual Patching

An agile security approach

Available to security teams in lieu of software development

React quickly while waiting for the cleanup

https://www.owasp.org/index.php/Virtual_Patching_Cheat_Sheet

Our Virtual Patching Approach

Understand how to exploit the security issue

Only patch known vulnerabilities or weaknesses

Avoid over-patching or doing things that will cause issues:
● Learning mode, tuning, false positives
● Large blocklists
● Focus only on the script, page or parameter affected

What do we need to do?
Proxy? WAF? Code?

Block traffic to certain urls, from IPs, countries ✓

Add headers into responses, modify cookies ✓ ✓

Detect SQLi, XSS attacks ✓

Replace HTML in responses ✓

Modify requests to neutralise attacks ✓

Track users and their actions ✓

Add CSRF protection to a page ✓ ✓

Track application state ✓

Perform role and privilege checks ✓

How do we react?

Choose an approach:

Alert - so you know if there’s an attack
Block - if you’re not worried about the user’s experience
Redirect - send the user to an error page
Transform - change request or response to make safe
Validation - if you want to give helpful messages to guide

users to enter correct values

“Let me secure that for you!”

lmstfu.com

WAF ALERT!!!!!

Our users hate our WAF because they’re blocked by false
positives

Our developers hate our WAF because it slows them down

Our sysadmins hate our WAF because it requires constant
tuning

Our security team hate our WAF because it doesn’t block
real vulnerabilities

“ ”

Our Virtual Patching Approach

Understand how to exploit the security issue

Only patch known vulnerabilities or weaknesses

Avoid over-patching or doing things that will cause issues:
● Learning mode, tuning, false positives
● Large blocklists
● Focus only on the script, page or parameter affected

Recap

Only patch known vulnerabilities or weaknesses

Our Virtual Patching Approach

Recap

[Pause to demo a vulnerable website]

lmstfu.dev.0-days.net:5000

https://lmstfu.dev.0-days.net

Our site has multiple vulnerabilities and weaknesses

OWASP Top 10:

● Access to admin urls
● Purchase negative quantities
● SQL injection in product

search
● Cross-site scripting in product

comments
● Cross-site request forgery in

product comments

Business-logic vulnerabilities:

● Viewing other people’s orders
● Jumping past the payment

screen
● Disclosure of credit card

numbers
● Password weaknesses

“Let me secure that for you!”

ModSecurity
● Open-source

web app firewall

Node.js
● Fast, flexible, event-driven
● State storage in redis

OWASP Core Rule Set
● Signatures for common

OWASP attacks

Docker

Demo of lmstfu setup

ModSecurity

● Originally an Apache httpd module
● v2.9.3 also supports IIS and nginx (instabilities)
● v3.0.3 rewritten into libmodsecurity + connector

○ Not all features supported
yet

● Doesn’t do much out of
the box
○ Safe to enable in

DetectionOnly mode

modsecurity.org | www.feistyduck.com/books/modsecurity-handbook/

OWASP ModSecurity Core Rule Set

Ruleset for common attacks:
SQL Injection (SQLi)
Cross Site Scripting (XSS)
Local File Inclusion (LFI)
Remote File Inclusion (RFI)
Remote Code Execution (RCE)
PHP Code Injection
HTTPoxy
Shellshock
Session Fixation
Scanner Detection
Metadata/Error Leakages
GeoIP Country Blocking

coreruleset.org

Tuned to avoid false positives

crs-setup.conf.example - configure mode, paranoia level

OWASP ModSecurity Core Rule Set

REQUEST-901-INITIALIZATION.conf
REQUEST-903.9001-DRUPAL-EXCLUSION-RULES.conf
REQUEST-903.9002-WORDPRESS-EXCLUSION-RULES.conf
REQUEST-905-COMMON-EXCEPTIONS.conf
REQUEST-910-IP-REPUTATION.conf
REQUEST-911-METHOD-ENFORCEMENT.conf
REQUEST-912-DOS-PROTECTION.conf
REQUEST-913-SCANNER-DETECTION.conf
REQUEST-920-PROTOCOL-ENFORCEMENT.conf
REQUEST-921-PROTOCOL-ATTACK.conf
REQUEST-930-APPLICATION-ATTACK-LFI.conf
REQUEST-931-APPLICATION-ATTACK-RFI.conf
REQUEST-932-APPLICATION-ATTACK-RCE.conf
REQUEST-933-APPLICATION-ATTACK-PHP.conf
REQUEST-941-APPLICATION-ATTACK-XSS.conf
REQUEST-942-APPLICATION-ATTACK-SQLI.conf
REQUEST-943-APPLICATION-ATTACK-SESSION-FIXATION.conf

RESPONSE-950-DATA-LEAKAGES.conf
RESPONSE-951-DATA-LEAKAGES-SQL.conf
RESPONSE-952-DATA-LEAKAGES-JAVA.conf
RESPONSE-953-DATA-LEAKAGES-PHP.conf
RESPONSE-954-DATA-LEAKAGES-IIS.conf

Look at requests Look at responses

REQUEST-949-BLOCKING-EVALUATION.conf
RESPONSE-959-BLOCKING-EVALUATION.conf
RESPONSE-980-CORRELATION.conf

Is this an attack?

SecRule VARIABLES OPERATOR [ACTIONS]

Anatomy of a SecRule

http://lmstfu.com/SecRuleLayout

Anatomy of a SecRule

SecRule VARIABLES OPERATOR [ACTIONS]

SecRule REQUEST_FILENAME

http://lmstfu.com/SecRuleLayout

ARGS, ENV, FILES, IP, PATH_INFO, REMOTE_ADDR, REQUEST_COOKIES, REQUEST_URI,
REQUEST_HEADERS, ...

Anatomy of a SecRule

SecRule VARIABLES OPERATOR [ACTIONS]

SecRule REQUEST_FILENAME "@rx /order/details/" \

http://lmstfu.com/SecRuleLayout

@rx, @streq, @beginsWith, @contains, @gt, @lt,

Anatomy of a SecRule

SecRule VARIABLES OPERATOR [ACTIONS]

SecRule REQUEST_FILENAME "@rx /order/details/" \
 "id:11101,phase:1,deny,log,\

http://lmstfu.com/SecRuleLayout

Phases:
1) Request headers, 2) Request body, 3) Response headers, 4) Response body, 5)Logging

Anatomy of a SecRule

SecRule VARIABLES OPERATOR [ACTIONS]

SecRule REQUEST_FILENAME "@rx /order/details/" \
 "id:11101,phase:1,deny,log,\
 t:none,t:lowercase,t:normalisePath,\

http://lmstfu.com/SecRuleLayout

Anatomy of a SecRule

SecRule VARIABLES OPERATOR [ACTIONS]

SecRule REQUEST_FILENAME "@rx /order/details/" \
 "id:11101,phase:1,deny,log,\
 t:none,t:lowercase,t:normalisePath,\
 msg:'Blocking access to %{MATCHED_VAR}'"

http://lmstfu.com/SecRuleLayout

SecRule chaining

Logical AND between rules:

SecRule ARGS:p "@rx test1" \
id:2000,chain,...

SecRule ARGS:q "@rx test2"

More complex flow control
SecMarker IF

SecRule &ARGS:admin "@gt 0" \
"id:2000,pass,nolog,skipAfter:ELSE"

SecMarker THEN
SecRule ARGS:p "@rx K1" "id:2001,block,log"
SecAction "id:2003,pass,nolog,skipAfter:END"

SecMarker ELSE
SecRule ARGS:p "@rx K3" "id:2003,block,log"

SecMarker END

www.feistyduck.com/books/modsecurity-handbook/

Demo of modsecurity

Block a URL
Inspect:

● Inspect Request Headers
○ Is it the right url?

Take action:

● Reject

GET /admin/orders

SecRule REQUEST_FILENAME "/admin/orders" \

 "id:11101,phase:1,deny,log,\

 t:none,t:lowercase,t:normalisePath,\

 msg:'Blocking access to %{MATCHED_VAR}'"

Validating a parameter
Inspect:

● Inspect Request Headers +
Body
○ Is parameter a positive

number?

Take action:

● Reject

Quantity=-1

SecRule ARGS:/^ProductChoices\[.*\].Quantity$/ "!@rx ^\d+$" \
 "id:10050, phase:2, pass, log, \
 t:none, t:removeWhitespace, \
 msg:'Invalid quantity entered: %{MATCHED_VAR}'" (V15)

XSS in the input?
Inspect:

● Inspect Request Headers +
Body
○ Does parameter look like

XSS?

Take action:

● Reject

<script>alert(1)</script>

Configure-Time: Only test XSS for the Comment parameter

SecRuleUpdateTargetByID 941100-941999 "ARGS:Comment"

See V15

#

Blocking XSS

26 regexes from coreruleset.org

ModSecurity also uses libinjection for XSS and SQLi
detection

Guns and Butter: Towards Formal Axioms of Validation
Hanson and Patterson

…formally proved that for any regex validator, we could construct either a
safe query which would be flagged as dangerous, or a dangerous query
which would be flagged as correct

Blocking XSS

https://github.com/client9/libinjection | http://slidesha.re/OBch5k

SQL injection in the input?
Inspect:

● Inspect Request Headers +
Body
○ Does parameter look like

SQLi?

Take action:

● Reject

' OR 1==1 --

Configure-Time: Only test SQLi for the SearchTerm parameter

SecRuleUpdateTargetByID 942100-942999 "ARGS:SearchTerm"

See V17

#

Cross-Site Request Forgery
Inspect:

● Inspect Request Headers +
Body
○ Is the referrer wrong?
○ Is the origin wrong?
○ Is there a valid CSRF

token?

Take action:

● Reject

POST /AddComment

If no token exists:
- Create a CSRF token using ModSecurity
- Send the token as a cookie
- Add the token to the form post using inserted
 javascript
- On POST, check if the cookie value matches the posted value
See V16

Missing headers and cookie flags
Take action:

● Alter Response Headers
○ Set cookie flags
○ Add new headers

Set-Cookie: a=b

Header edit Set-Cookie "(?i)^(.AspNetCore.Antiforgery.(?:(?!httponly).)+)$" "$1; HttpOnly"

See V13

Why do we use ModSecurity + CRS?

Good, low false positive set of XSS and SQLi rules

Efficient processing and blocking

Allows simple things to be done relatively easily

Can be extended to do complex things, but it gets
complicated fast!

Limitations of ModSecurity

● Daunting syntax
● Limited manipulation of the response body

○ Hard to remove sensitive data, add validation text etc

● Hard to capture program state
● Extensible via Lua, but not many examples

Business Logic

“Let me secure that for you!”

node.js proxy
● Business logic
● Storing state in

redis
● Transforming

HTML

Redbird, http-proxy, harmon, trumpet

Redbird

● Wraps http-proxy with extra
features

Harmon

● Uses trumpet for streaming HTML
manipulation

160+ node modules!

Search www.npmjs.com for Redbird, http-proxy, harmon, trumpet

Demo - More complex vulnerabilities

View other people’s orders
Inspect + State:

● Inspect the response to the
“My Orders” request

● Store all the user’s orders
persistently

● Check requests for order
details to make sure the user
can access

Take action:

● Blockordercontrol.js

GET /Order/Details?id=14

GET /Order

Orders 1,2,3,5

Skip the payment step and get free orders
Inspect + State:

● Keep track of which steps
have submitted successfully

● Check no step is missed

Take action:

● Redirect to Step1

stepcontrol.js

GET /ShoppingCart/Step1,2,4

HTML Manipulation

<html>

autocomplete.js

simpleselect.query = 'input[type=password]';

simpleselect.func = function (node) {

node.setAttribute('autocomplete','off');

}

PCI Compliance

<html>

creditcard.js

step3cardnumber.query = '#CartPaymentViewModel_CardNumber'
step3cardnumber.func = function (node) {
 var attr = node.getAttribute("value");
 if (attr !== "") {
 node.setAttribute("value", "****-****-****-****");
 }
}

Other examples

● Password strength checking
● HTML manipulation
● Tamper-protection on hidden fields
● Changing validation rules and messages
● XML / json inspection
● API protection

Why use node.js proxy?

Javascript is the language of the internet

Fast, scalable, mature

Often used for node.js load balancing

Performant HTML manipulation

Limitations of node.js proxy

● Asynchronous programming is hard
● Still need modsecurity + CRS for signatures
● Lot of overlaps with modsecurity - which tool is the right

one?

Virtual Patching is a thing

Another tool to add to your toolbelt

Prepare the infrastructure in advance

Attacks

SDLC

Production

Web Server

App

Deployment

RASP

AV

Config
Agent

IDS DLP

IAM

P
ro

xy
V

irt
ua

l P
at

ch
in

g

SIEM

Cloud workflow
protection

Identity
Governance

Configuration
Management

Configuration
Review

Vulnerability Scan
Penetration

Testing

Monitoring

App Release
Automation

Fi
re

w
al

l
Threat

modelling

Security
Training

Security
Reviews

SAST

DAST

Security
Testing

IAST

Building it securely

Verifying it’s secure

Patch
Management

OS Hardening

File integrity
monitoring

Hosting it securely

Standard Operating
Procedures

Policies

React quickly

Our Virtual Patching Approach

Understand how to exploit the security issue

Only patch known vulnerabilities or weaknesses

Avoid over-patching or doing things that will cause issues:
● Learning mode, tuning, false positives
● Large blocklists
● Focus only on the script, page or parameter affected

Recap

Only patch known vulnerabilities or weaknesses

Our Virtual Patching Approach

Recap

Virtual Patching: Does it work?
OWASP NZ Day | 22 Feb 2019

Kirk Jackson | @kirkj
lmstfu.com | @LetMeSecureThat

