Webservice,
Microservice and REST

Security

Jim Manico
(OWASP-Stammtisch Minchen, 9th Nov 2018)

A little background dirt...
jim.manico@owasp.org

y@manicode

MANICODE

= Former OWASP Global Board Member

» Project manager of the
OWASP Cheat Sheet Series and
several other OWASP projects

= 20+ years of software
development experience

Iron-Clad Java: Building <
= Author Of "|ron_C|ad Java, Secure Web Applications ...

Best Practices for Secure Java Web Application

Building Secure Web Applications” B
from McGraw-Hill/Oracle-Press

= Kauai, Hawaii Resident

Jim Manico, 2018

WARNING: Please do not attempt to hack any
computer system without legal permission to do so.
Unauthorized computer hacking is illegal and can

be punishable by a range of penalties including

loss of job, monetary fines and possible imprisonment.

ALSO: The Free and Open Source Software presented in these materials are
examples of good secure development technigues. You may have unknown
legal, licensing or technical issues when making use of Free and Open Source
Software. You should consult your company's policy on the use of Free and Open
Source Software before making use of any software referenced in this material.

Jim Manico, 2018 3

"API| security Is going to be a much
bigger topic in 2018. So many
companies think their attack surface
IS the website and that 2FA solves
everything but APl access is done via
tokens and secrets. APl security Is at
least a couple of years behind other
types of web security.”

Daniel Miessler
https://danielmiessler.com/podcast/

https://danielmiessler.com/podcast/

REST History

Introduced to the world
in a PHD dissertation by
Roy Fielding in 2000

Promoted use of
standard HTTP
conventions (HTTP
verbs, error codes, etc)
and resources based
access (endpoints are
nouns and not verbs) to
build stateless
webservices

Http Method gzt:rg?isoen
PUT Update
POST Insert
GET Select
DELETE Delete

The Glory of REST

S
Glory of REST ,

Level 3: Hypermedia Controls

Level 1: Resources

Level 0: The Swamp of POX

http://martinfowler.com/articles/richardsonMaturityModel.html

Jim Manico, 2018

Level 0 — RPC/POX

POST /appointmentService HTTP/1.1
<openSlotRequest date="2010-01-04" doctor="mjones"/>

HTTP/1.1 200 OK
<openSlotList>
<slot start="1400" end="1450">
<doctor id="mjones"/>
</slot>
<slot start="1600" end="1650">
<doctor id="mjones"/>
</slot>
</openSlotList>

http://martinfowler.com/articles/richardsonMaturityModel.html|

Jim Manico, 2018

Level 1 — Resources

POST /doctors/mjones HTTP/1.1
<openSlotRequest date="2010-01-04"/>
HTTP/1.1 200 OK

<openSlotList>
<slot id="1234" doctor="mjones" start="1400" end="1450"/>

<slot id="5678" doctor="mjones" start="1600" end="1650"/>
</openSlotList>

http://martinfowler.com/articles/richardsonMaturityModel.html

Jim Manico, 2018

Level 2 —HTTP Verbs

GET /doctors/mjones/jmanico/slots?date=20190104&status=open
HTTP/1.1

HTTP/1.1 200 OK

<openSlotList>
<slot id="1234" doctor="mjones" start="1400" end="1450"/>
<slot id="5678" doctor="mjones" start="1600" end="1650"/>
</openSlotList>

Http Method Database Operation
PUT Update

POST Insert

GET (DANGER) Select

DELETE Delete

http://martinfowler.com/articles/richardsonMaturityModel.html|

Jim Manico, 2018

URL Parameter Leakage

Bookmarks

Browser History
Proxy Server Logs
Web Server Logs

Referer Request Headers

Search Engine Crawlers

Jim Manico, 2018

Level 2 — HTTP Response Codes

1xx Informational

100 Continue

2xx Success

% 200 OK

203 Non-Authoritative Information
206 Partial Content

226 IM Used

3xx Redirection
300 Muiltiple Choices
303 See Other

An

306 (Unused)

4xx Client Error
% 400 Bad Request

% 403 Forbidden

406 Not Acceptable

% 409 Conflict

412 Precondition Failed

415 Unsupported Media Type
418 I'm a teapot (RFC 2324)
423 Locked (WebDAV)

426 Upgrade Required

431 Request Header Fields Too Large

450 Blocked by Windows Parental Controls (Microsoft)

5xx Server Error

% 500 Internal Server Error

Jim Manico, 2018

101 Switching Protocols

% 201 Created
% 204 No Content
207 Multi-Status (WebDAV)

301 Moved Permanently
% 304 Not Modified

o Ta v d

307 Temporary Redirect

% 401 Unauthorized

% 404 Not Found

407 Proxy Authentication Required
410 Gone

413 Request Entity Too Large

416 Reqguested Range Not Satisfiable
420 Enhance Your Calm (Twitter)
424 Failed Dependency (WebDAV)
428 Precondition Required

444 No Response (Nginx)

451 Unavailable For Legal Reasons

501 Not Implemented

102 Processing (WebDAV)

202 Accepted
205 Reset Content
208 Already Reported (WebDAV)

ann

302 Found
05 Use Proxy
308 Permanent Redirect (experimental)

402 Payment Required

405 Method Not Allowed

408 Request Timeout

411 Length Required

414 Request-URI Too Long

417 Expectation Failed

422 Unprocessable Entity (WebDAV)
425 Reserved for WebDAV

429 Too Many Requests

449 Retry With (Microsoft)

499 Client Closed Request (Nginx)

502 Bad Gateway

The PUT/DELETE/PATCH request methods

PUT, DELETE and PATCH are used to update resources in the backend
« PUT creates or replaces a resource at the given URL

« DELETE removes a resource at the given URL

« PATCH performs a partial update of the resource at the given URL

These methods are commonly used in combination with a REST API

* They can only be sent by using JavaScript, never by using HTML
elements

« HTMLS wanted to add this, but they closed the can of worms rather
quickly

DR. PHILIPPE DE RYCK @PhilippeDeRyck

HTTP PUT Request

= An HTTP PUT request is used to replace a resource, or to create a
new resource where the identifier of the resource is known.

®" The same security precautions that apply to an HTTP POST request
should also apply to a PUT request.

= Never send sensitive data in the query string of an HTTP PUT request

& =2 C | [view-source

S.ajax(
"https://contact-manager.example/contacts/1234",
dataType: "json",
type: "PUT",
data: {

name: "John Doe",

email: "john.doelexample.com"

Jim Manico, 2018

HTTP DELETE Request

= An HTTP DELETE request is used to delete a resource.

®" The same security precautions that apply to an HTTP POST request
should also apply to a PUT request.

= Never send sensitive data in the query string of an HTTP PUT request.

= Not all web servers and application frameworks will allow for a
message body in an HTTP DELETE. Therefore, it is sometimes

possible that sensitive cannot be securely sent from an HTTP
DELETE.

& =2 C | [view-source

S.ajax(
"https://contact-manager.example/contacts/1234",
dataType: "json",
type: "DELETE"

) ;

Jim Manico, 2018

HTTP PATCH Request

= An HTTP PATCH request is used to apply partial modifications to a
resource.

®" The same security precautions that apply to an HTTP POST request
should also apply to a HTTP PATCH request.

= Never send sensitive data in the query string of an HTTP PATCH
request.

& =2 C | [view-source

S.ajax(
"https://contact-manager.example/contacts/1234",
dataType: "json",
type: "PATCH",
data: {

emall: "john.doelexample.com"
}
) ;

Jim Manico, 2018

Level 2 - HTTP Response Error Codes

POST /slots/1234 HTTP/1.1

<appointmentRequest>
<patient id="jsmith"/>
</appointmentRequest>

HTTP/1.1 201 Created (or) HTTP/1.1 409 Conflict
Location: slots/1234/appointment

<appointment>
<slot id="1234" doctor="mjones" start="1400" end="1450"/>

<patient id="jsmith"/>
</appointment>

http://martinfowler.com/articles/richardsonMaturityModel.html

Jim Manico, 2018

Level 3 — Hypermedia

HTTP/1.1 201 Created (or) HTTP/1.1 409 Conflict
Location: slots/1234/appointment

<appointment>
<slot id="1234" doctor="mjones" start="1400" end="1450"/>
<patient id="jsmith"/>
<link rel="/linkrels/appointment/cancel"
uri="/slots/1234/appointment" />
<link rel="/linkrels/appointment/addTest"
uri="/slots/1234/appointment/tests" />
<link rel="self"
uri="/slots/1234/appointment" />
<link rel="/linkrels/appointment/changeTime"
uri="/doctors/mjones/slots?date=20100104&status=open" />
</appointment>

http://martinfowler.com/articles/richardsonMaturityModel.html#lILoveKirk

Jim Manico, 2018

Why?

Level 1 tackles the question of handling
complexity by using divide and conquer, breaking
a large service endpoint down into multiple
resources.

Level 2 introduces a standard set of verbs and
other HTTP artifacts so that we handle similar
situations in the same way, removing
unnecessary variation.

Level 3 introduces discoverabillity, providing a
way of making a protocol more self-documenting.

REST Applications
Session Management

The truth is a lot more complicated

Pure REST APIs should be stateless

The server is stateless, and the client provides all the required information
A valid argument for stateless backends is flexible scalability

Purity is rarely a good argument to throw working solutions overboard
An API can just as well keep session state on the server

Makes scalability harder, but not impossible
= We have been doing this for 20 years with sticky sessions, session replication, ...

Bringing cookies into the mix at this point makes even less sense
Cookies are known as the state mechanism for HTTP

Nobody prevents your REST API from using cookies to keep state on the client
Don't even ask about the cookies vs. tokens debate

DR. PHILIPPE DE RYCK @PhilippeDeRyck

Three properties of "Session management”

The locality and representation of the data
Where will you keep your session data?
How will you represent your session data?

E.g., server-side vs client-side sessions, session identifiers vs self-contained
JWT tokens

The storage mechanism

How will you store your session data (regardless of what the data really is)?
E.g., cookies vs localStorage vs sessionStorage

The transport mechanism

How will you get the data to the client and back (the essence of a session)?
E.g., cookies vs the authorization header

DR. PHILIPPE DE RYCK @PhilippeDeRyck

Why do Webservice Bugs Happen?

Location in the "trusted" network of your data center gives
false sense of security

SSRF (Server Side Request Forgery) to Internal REST APIs
Self describing and predicable nature (hypermedia) of REST

Complete lack of HTTPS or placement of sensitive data in
URL's

Complete lack of Authentication or use of weak
authentication

Complete lack of Authorization or weak authorization design

Jim Manico, 2018

Server Side Request Forgery (SSRF)

Courtesy of Alvaro Munoz
@pwntester

Attacking An Internal Network (REST style)

* Find an HTTP REST proxy w/ vulns

~ T
* Figure out which REST based /_\ E a5
systems are running on the internal = S
network =
. v ~ T
* Exfiltrate data from the REST = -
’ . L -
interface of the backend system or > oc
\
e Get RCE on an internal REST API
23
* What backend systems have a REST 3
API that we can attack: o
— ODATA in MS SQL Server = ¥ =
— Beehive and OAE RESTful AP L e <
o (a'ef
— Neo4j, Mongo, Couch, Cassandra, HBase, %
your company, and many more @
N
o <

AS5

Non-compromised machine <
Affected machine

URLs to backend REST APIs are built with concatenation
instead of URIBuilder (Prepared URI)

* Most publically 2 <
exposed REST APIs turn =S — =
around and invoke ___>g’<__> 5o
internal REST APIs 2 =y

(

using URLConnections,
Apache HttpClient or
other REST clients. If
user input is directly
concatenated into the
URL used to make the
backend REST request
then the application
could be vulnerable to
Extended HPPP.

What to Look For

new URL (“http://yourSvr.com/value” + var);

new Redirector(getContext(), urlFromCookie,
MODE_SERVER_OUTBOUND);

HttpGet(“http://yourSvr.com/value” + var);
HttpPost(“http://yourSvr.com/value” + var);

restTemplate.postForObject(“http://localhost
:8080/Rest/user/” + var, request, User.class);

.1..[..J]admin/report/global

%2e%2e%2f%2e%2e%2
f%2e%2e%21%61%64%
6d%69%6e%2{%72%065
%70%61% 72% 74%2f%6
7%6C%61%62%61%6cC

Jim Manico, 2018

Safe URL Construction
http://blog.palominolabs.com/2013/10/03/creating-
urls-correctly-and-safely/index.html

UrlBuilder.forHost("http", "foo.com")
JpathSegment("with spaces")
JpathSegments("path”, "with", "varArgs")
pathSegment("&=2/")

.queryParam("fancy + name", "fancy?=value")
.matrixParam("matrix", "param?")
fragment("#?=")

toUrlString()

Jim Manico, 2018

Additional SSRF resources

SSRF Testing Resources
* https://qgithub.com/cujanovic/SSRE-Testing/blob/master/README.md

Nicolas Gregoire talk at AppSecEU of SSRF

o http://www.aqgarri.fr/docs/AppSecEU15-
Server side browsing considered harmful.pdf

o https://www.youtube.com/watch?v=8t5-A4ASTIU

Great talk by Orange Tsai at BlackHat and Defcon
* https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-

Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-
L anqguages.pdf

* http://blog.orange.tw/2017/07/how-i-chained-4-vulnerabilities-on.html
o https://www.youtube.com/watch?v=D1S-G8rJrEk

Jim Manico, 2018

https://github.com/cujanovic/SSRF-Testing/blob/master/README.md
http://www.agarri.fr/docs/AppSecEU15-Server_side_browsing_considered_harmful.pdf
https://www.youtube.com/watch?v=8t5-A4ASTIU
https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf
http://blog.orange.tw/2017/07/how-i-chained-4-vulnerabilities-on.html
https://www.youtube.com/watch?v=D1S-G8rJrEk

Faking Out Security Filters (Bypass)

Security
Filter/Servlet

* Hacker e Looks like a GET but turns
e “ method” into PUT, POST, or DELETE
parameter e creditinfo?_method=PUT

e “X-HTTP-Method-
Override” header

HTTPS / TLS
Transport Layer Security

“Cryptography is only
truly useful If the rest
of the system Is also
sufficiently secure
against the attackers.”

Bruce Schneler
Security Engineering

HTTPS /TLS: When and How

Where should HTTPS be used at minimum?

EVERYWHERE

Webservice Authentication

Webservice Authentication and Session Management

 First identify the server via TLS and a certificate
authority of some kind.

« Single Server Consumer Apps: Web Sessions

 Federated Consumer Apps: OpenlD Connect

« Stateless Microservices: JWT

 Machine Acting on Behalf of Users: OAuth 2
(Delegation)

« Strict Machine to Machine Communication:
Mutual TLS

Webservice Access Control

INSECURE OBJECT REFERENCE

Request

GET https://api.example.com/users/1234/private-messages

Controller: Attack

PYTHON

class PrivateMessagesView (APIView) :
def get(self, request, user id):
"""Get the private messages for a specific user"""
msgs=private messages (user id)
return Response (data=msgs, status=200)

Controller: Remediation

class PrivateMessagesView (APIView) :
def get(self, request, user id):
"""Get the private messages for a specific user"""
if request.user.id != user id:
return Response (data={'msg': 'forbidden'}, status=403)
msgs=private messages (user id)
return Response (data=msgs, status=200)

Jim Manico, 2018

INSECURE OBJECT REFERENCE: DEFENSES

 Verify that data being accessed is owned
by by current authenticated user

» Consider lookup maps between object ids
and user ids or user group ids

 Verify user authorization to objects using a
modern access control design such as
capabllities

Jim Manico, 2018

HTTP METHODS PROTECTION

Ensure that a requesting user is authorized to use a given method

* Anonymous user cannot DELETE a
blog article

* Anonymous user can GET a blog
article

 Admin User can POST, PUT,
DELETE, and GET a blog article

UNAUTHORIZED PRIVILEGED ACTIONS:
EXAMPLES

Controller: Vulnerable

#PYTHON

class AdminCommentsView (APIView) :
def delete(self, request, comment id):
"""Allow an Admin to delete a comment"""
comment=get comment (comment id)
comment.delete ()
return Response (status=204)

Controller: Defense

def delete(self, request, comment id):
"""Allow an Admin to delete a comment"""
comment=get comment (comment id)
Does "request.user.id have permission to "delete" a "comment"
where the "comment id" is “comment id’?
perm=\
has permission (
request.user.id,
'comment',
'comment id',
comment id,
'delete')
if not perm:
return Response (data={'msg': 'forbidden'}, status=403)
comment.delete ()
return Response (status=204)

Role Based Example
Do not or do not do this!

€« 2 C |[) view-source

if

) A

user
user
user
user

.1sRole(
.1sRole(
.1sRole(
.1sRole(

"JEDI") ||

"PADAWAN") ||

"SITH LORD") ||
"JEDI_KILLING CYBORG")

log.info ("You may use a lightsaber. Use it wisely.");
} else {
log.info ("Lightsaber access violation! ");

}

Jim Manico, 2018

Permission (Claims) Based
Access Control Enforcement Points

The Problem

Web Application needs secure access control mechanism

The Solution

& =2 C |[3 view-source

1f (currentUser.isPermitted("lightsaber:wield")) ({
log.info("You may use a lightsaber ring. Use it wisely.");
} else {

log.info ("Sorry, lightsaber rings are for schwartz masters
only.");
}

Jim Manico, 2018

Permission (Claims) Based
Access Control Enforcement Points

The Problem

Web Application needs secure access control mechanism

The Solution

& =2 C | [view-source

int shipId = Integer.parselnt (request.getParameter ("shipId")):;

1f (currentUser.isPermitted("starship:drive:" + shipId)) {
log.info("You may drive starship " + shipId);
} else {

log.info("Sorry. You may not drive starship " + shipId);

Jim Manico, 2018

Basic Data Contextual Access Control Schema

Permission / Feature

Permission

Permission ID Name Data Check T/F Data Type ID Customer ID
15 lightsaber:wield F 1

25 starship:drive T 10 1

26 starship:drive F 2

Data Type ID Data Name UIiD User Name

10 Starship 1 Luke Skywalker

11 Lightsaber 2 Han Solo

User ID Permission ID Role ID/Group ID Data Element ID Data Group Id
1 15

2 25 1138

15 5 (Jedi)

Jim Manico, 2018

Server Side JSON Issues

Validate that the JSON is

actually correct, parseable
JSON

JSON SERVER-SIDE
INPUT VALIDATION

Parse the JSON safely

Parseable JSON may contain
dangerous data!

Start by ensuring that the
JSON is of the correct
format by validating
against a JSON Schema
for each webservice
endpoint.

http://json-schema.org/

Jim Manico, 2018

Parse the JSON using a
battle-tested and
updated JSON parser.

JSON parsers have a
history of security
vulnerablities related to
security problems with
serialization and
deserialization.

Even if a JSON string is
correct and parseable
JSON, it can still be
unsafe from wrong data

types.

Use query
parameterization in any
SQL queries which use
JSON input as input
parameters

Use proper XSS defense
if JSON input is used as
output to browser

Here is a basic example of a JSON Schema:

{
"title": "Example Schema",
"type": "object",
"properties": {
"firstName": {
"type": "string"
}o
"lastName": {
"type": "string"
by
"age": {
"description": "Age in years",
"type": "integer",
"minimum": 0
}
}o
"required": ["firstName", "lastName"]
}

http://json-schema.org/examples.html

Jim Manico, 2018

http://json-schema.org/examples.html

JSON parsers are mostly insecure

FastJSON
Json.Net

FSPickler

Sweet.Jayson
JavascriptSerializer

DataContractlsonSeri
alizer

Jackson
Genson

JSON-IO
FlexSON
GSON

Jim Manico, 2018

. NET Default
NET

Configuration

NET Default

. NET Default
.NET Configuration

.NET Default
Java Configuration
Java Configuration

. Java Default

Default

Configuration

Cast
Expected Object Graph Inspection

Expected Object Graph Inspection

Cast
Cast

Expected Object Graph Inspection +

whitelist

Expected Object Graph Inspection
Expected Object Graph Inspection

Cast
Cast
Expected Object Graph Inspection

Alvaro Munoz — July 2017 — Blackhat
Security Research with HPE @pwntester

Setter
Setter

Deser. callbacks
Setter

Deser. callbacks
Setter

Setter
Setter

Deser. callbacks
Setter

Setter

toString
Setter

https://github.com/google/gson

google / gson @Watch 586 % Star 9,749 YFork 2,194
<> Code (D Issues 240 Il Pull requests 48 [l Projects 1 Insights +

A Java serialization/deserialization library to convert Java Objects into JSON and back

D 1,364 commits ¥ 13 branches © 35 releases 22 69 contributors sfs Apache-2.0
Branch: master v New pull request Find file
E naturalwarren committed with JakeWharton Make GsonBuilder.create() factory order idempotent. (#1141) Latest commit d9cc7bc 8 hours ago
B8 codegen Followup to r1175. Use the same copyright holder for all files. 5 years ago
B8 examples/android-proguard-exa... Prevent Proguard from stripping interface info from @JsonAdapter classes 11 months ago
8 extras Fix well formed exception (#1105) 2 months ago
i gson Make GsonBuilder.create() factory order idempotent. (#1141) 8 hours ago
i lib moved lib at the top-level to share eclipse styles. 9 years ago
B8 metrics Replace switch with if/else when processing whitespace. If/else is fa... 5 years ago
i proto list addition optimization (#1038) 5 months ago
[E .gitignore fixed pom and .gitignore 2 years ago
[E) .travis.yml Add Travis Cl build. 2 years ago

_ [El CHANGELOG.md Update CHANGELOG.md 3 months aao

Jim Manico, 2018

Should you trust all JISON? (no)

{

"first name":

"' or 1=1-- ",

"homepage" :
"http://www.bad.com/packxl/cs.jpg?&cmd=uname%20-a",
"username" :

"*) (uid=*)) (| (uid=*",

"email":

"woot'or'l'!='ing@manico.net",

"profile image":

"/ o o /.. /etc/passwd",

"image tag":

"",
"bio":
"<script>document.body.innerHTML="'<hl>TomWazHere';</script>"
}

Jim Manico, 2018

XML

Jim Manico, 2018

XML Input Parsing Security Checklist

* Do not allow input documents to contain DTDs

* Do not expand entities

* Do not resolve external references

* Impose limits on recursive parse depth

 Limit total input size of document

« Limit parse time of document

« Use an incremental or stream parser such as SAX for
large documents

« Validate and properly gquote arguments to XSL
transformations and XPath queries

* Do not use XPath expression from untrusted sources

* Do not apply XSL transformations that come untrusted
sources

Credit: https://pypi.python.org/pypi/defusedxml#how-to-avoid-xml-vulnerabilities

XML Schema Validation

<?xml version="1.0" encoding="UTF-8" 7>
<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:.element name="shiporder">
<xs.complexType>
<xs:seguence>
<xs:.element name="orderperson" type="xs:string"/>
<xs.element name="shipto">
<xs.complexType>
<xs:seguence>
<xs:.element name="name" type="xs:string"/>
<xs:.element name="address" type="xs:string"/>
<xs.element name="city" type="xs:string"/>
<xs:.element name="country" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:.element>

http://www.w3schools.com/XML/schema_example.asp

Jim Manico, 2018

XML EXTERNAL ENTITY PROCESSING

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE foo |

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///etc/passwd" >
1>
<foo>&xxe;</foo>

Remediation

Specify the option to the XML parser to make sure it does not include external entities

https://www.owasp.org/index.php/XML External Entity (XXE) Prevention Cheat Sheet

Jim Manico, 2018

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

XEE Prevention in Java/JAXP

Disable all external entity references

// Document Builder

DocumentBuilderFactory dbf=DocumentBuilderFactory.newlInstance() ;
dbf.setAttribute ({ {XMLConstants.ACCESS EXTERNAL DTD}}, "");
dbf.setAttribute ({ {XMLConstants.ACCESS EXTERNAL SCHEMA}}, "");
dbf.setAttribute ({ {XMLConstants.ACCESS EXTERNAL STYLESHEET}}, "");

// SAX Parser

SAXParserFactory spf=SAXParserFactory.newlInstance () ;

SAXParser parser=spf.newSAXParser () ;
parser.setProperty ({ {XMLConstants.ACCESS EXTERNAL DTD}}, "");
parser.setProperty ({ {XMLConstants.ACCESS EXTERNAL SCHEMA}}, "");
parser.setProperty ({ {XMLConstants.ACCESS EXTERNAL STYLESHEET}}, "");

// XML Input

XMLInputFactory xif=XMLInputFactory.newInstance () ;
xif.setProperty ({ {XMLConstants.ACCESS EXTERNAL DTD}}, "");
xif.setProperty ({{XMLConstants.ACCESS EXTERNAL SCHEMA}}, "");
xif.setProperty ({ {XMLConstants.ACCESS EXTERNAL STYLESHEET}}, "");

// Schema

SchemaFactory schemaFactory=SchemaFactory.newInstance (XMLConstants.W3C XML SCHEMA NS URI) ;
schemaFactory.setProperty ({ {XMLConstants.ACCESS EXTERNAL DTD}}, "");
schemaFactory.setProperty ({ {XMLConstants.ACCESS EXTERNAL SCHEMA}}, "");
schemaFactory.setProperty ({ {XMLConstants.ACCESS EXTERNAL STYLESHEET}}, "");

// Transformer

TransformerFactory factory=TransformerFactory.newInstance () ;
factory.setAttribute ({ {XMLConstants.ACCESS EXTERNAL DTD}}, "");
factory.setAttribute ({ {XMLConstants.ACCESS EXTERNAL SCHEMA}}, "");
factory.setAttribute ({ {XMLConstants.ACCESS EXTERNAL STYLESHEET}}, "");

https://www.owasp.org/index.php/ XML External Entity (XXE) Prevention Cheat Sheet

Jim Manico, 2018

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

XML EXPONENTIAL ENTITY EXPANSION

"Billion Laughs Attack"

<?xml version="1.0"?>

<!DOCTYPE lolz [
<!ENTITY lol "lol">
<!ENTITY lol2 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&l0l;&101;">
<!ENTITY lol3 "&lol2;&l0l2;&l0l2;&l0l12;6&1012;&1012;&1012;&1012;&1012;&1012;">
<!ENTITY lold "&lol3;&l1l013;&1013;&1013;6&1013;&1013;&1013;&1013;&1013;&1013;">
<!ENTITY lol5 "&lol4d;&lold;&lold;&lold;&lold;&lold;&lold; &lol4;&1l0l4d;&1014;">
<!ENTITY lol6 "&lol5;&l1l0l15;&l015;&10l15;6&1015;&1015;&1015;&1015;&1015;&1015;">
<!ENTITY lol7 "&lol6;&1016;&l0l16;&1016;&1016;&1016;&1016;&1016;&1016;&1016;">
<!ENTITY 1018 "&lol7;&lo0l7;&lol7;&1l0l7;&1l0l7;6&1017;&1017;&1017;&1017;&1017;">
<!ENTITY 10l9 "&lol8;&1018;&1018;&1018;&1018;&1018;&1018;&1018;&1018;&1018;">

1>

<lolz>&lol9;</lolz>

Remediation

« Disable DTD inclusion in document
« Set depth limits on recursive parsing
« Set memory limits for parser

Jim Manico, 2018

XSLT Injection

Python

def get(self, request):
xml=StringIO (request.POST["xml"'])
xslt=StringIO (request.POST["'xslt'])
xslt root=etree.XML (xslt)
transform=etree.XSLT (xslt root)
result doc=transform (xml)
res=etree.tostring (result doc)
return Response (res)

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<xsl:copy-of select="document ('/etc/passwd')"/>
</xsl:template>
</xsl:stylesheet>

Never process untrusted user XSLT transformations!

Credit: http://www.hpenterprisesecurity.com/vulncat/en/vulncat/php/xslt_injection.html

Jim Manico, 2018

Tokens

JWT is an open standard to exchange information

JWT tokens represent easy-to-exchange data objects
Content is signed to ensure integrity
Content is base64-encoded, to ensure safe handling across the web

JWT supports various kinds of algorithms

E.g. signhature with one shared key on the server-side, for use within
one application

E.g. signature with a public/private key pair, for use across
applications

The standardized way to exchange session data

Part of a JSON-based ldentity Protocol Suite

» Together with specs for encryption, signatures and key exchange
Used by OpenlD Connect, on top of OAuth 2.0

Jim Manico, 2018

A JWT Is a base64-encoded data object

eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCJI9. eyJpc3MiOiJkaXNOcmluZXQuY3Mua3VszXV2
ZW4uYmUiLCJ1leHAiOjIOMjUwNzgwMDAwWMDAs Im5hbWUiOiJwaGlsaXBwZSIsImFkbWluI jpOc
nV1£fQ.dIilOguZ7K3ADFnPOsmX2nEpF2Asq89g7GTuyQuN3so

{
"alg" J "H5256 " ’
"typ n : "LJ-WT n
}
Header

Jim Manico, 2018

"iss'": ”distrinet.cs
.kuleuven.be"”,
"exp'": 1425078000000,
"name": "philippe',
"admin'": true

Payload

HMACSHA256 (
base64UrlEncode (header)
+ ". n +
base64UrlEncode (payload),
“secret”

Signature

JSON Web Tokens or "JOT's"

Key
' ™ s ™
E ded PAYLOAD
Encoded HEADER neede
; Claims: Reserved
yp Public
alg Private
. Y, Y,

https://www.notsosecure.com/crafting-way-json-web-tokens/

Jim Manico, 2018

JWT represents data, not the transport mechanism

The cookies vs tokens debate can be a bit confusing
Cookies are a transport mechanism, just like the Authorization header
Tokens are a representation of (session) data, like a (session) identifier

JWT tokens can be transmitted in a cookie, or in the Authorization header
Defining how to transmit a JWT token is up to the web application
This choice determines the need for JavaScript support and CSRF defenses

Modern applications typically use JWT in the Authorization header
Frontend JavaScript apps can easily put the token into the Authorization header
JWT tokens are easy to pass around between services in the backend as well

Reference: Dr. Philippe De Ryck

Jim Manico, 2018

/ Best Practices for JSON Web
Tokens

Q Neil Madden ¥ (%) Jan 25, 2017

security jwt json

Jim Manico, 2018

#1 - Learn about the underlying security
properties

JWTs are not necessarily easier than other mechanisms
They use a standardized format (JSON)

JWTs look simple enough at the surface, but they’re actually fairly complex
They can be deployed in various different modes
There’s a plethora of cryptographic options

Getting the desired security properties depends on making sane choices
No need to be a crypto expert, but you should know about HMAC, encryption, ...
If libraries make them for you, do a sanity-check before using it

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

Jim Manico, 2018

HMAC'’s in Action for YubiHSM

Key Reset/F = KEY for HMAC stored in
Handie inal local key database only,

not retrievable
~_
Key Data HMAC-SHA1
Base

= Key handle is the HSM ID

= Data is password or KDF
of Password

YubiHSM

" HMAC @ Final is final
computed password hash

HMAC @ Final

Diagram © Yubico, reproduced under the fair use doctrine.

Jim Manico, 2018

#2 — Don’t go overboard

A piece of advice that applies everywhere: Keep It Simple
Make sure you really understand what you need
Select the simplest option to meet your needs

Concrete guidelines for using JWT tokens

Don’t store unnecessary data

Don’t encrypt if you don’t need confidentiality

An HMAC suffices for simple services

Public key-based signatures are useful for large, distributed setups

If you need JWT tokens on a simple service, an HMAC probably suffices
A shared key known by all servers that need to validate a JWT

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

Jim Manico, 2018

#3 - Plan for how you will manage your keys

JWTs depend on crypto keys for signatures (and encryption)
Key management is not an easy problem

A couple of questions that you want to think of up front
How will you go about using a new key?

What happens if a server gets compromised?

How many services share key material, and need to be updated?

Encryption and signature keys should be rotated frequently
Frequency depends on the usage, but this still needs to be taken into account

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

Jim Manico, 2018

#4 - consider using "headless"” JWTs

JWTs are untrusted data and need to be verified before using them
But all of the data used to verify them is right inside the token (except for the keys)

In 2015, two vulnerabilities in most libraries allowed JWT forgery
#1: many libraries accepted JWTs with the “none” signing algorithm
#2: libraries could be tricked to use an RSA public key as the key for an HMAC

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

Jim Manico, 2018

#6 - Consider JWT lifetimes and revocation

Long lifetimes for JWTs with session information can be problematic
What if the JWT is stolen?
How will you handle revocation?

A lot of people are bashing JWTs for lack of revocation
But this is true for any kind of client-side session object, regardless of the format
Revocation with server-side sessions is easy, but hard for client-side sessions

Embedding unique IDs in a JWT and keeping a blacklist is often
recommended

The blacklist needs to be checked during token revocation
But to blacklist you need to know all your JWT identifiers ...

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

Jim Manico, 2018

Side note on revocation

Why not associate a counter value with each user
Embed the counter into the JWT, and keep a copy in the database
More lightweight than keeping track of issued identifiers

Revoking JWTs for a user account is as simple as incrementing the counter

Validating a JWT requires a check against the stored counter value

A match means that the JWT is not revoked
A stored counter value that is higher than the JWT value means revocation

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

Jim Manico, 2018

#7 - Read the Security Considerations!

The different aspects of JWTs are covered by various RFCs
RFC 7515: JSON Web Signatures

RFC 7516: JSON Web Encryption

RFC 7517: JSON Web Key

RFC 7518: JSON Web Algorithms

Understand the differences between headers, cookies, tokens, ...
Make educated decisions about what to use where
Spread the word about what we have covered here!

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

Jim Manico, 2018

A .
Fridge
VRSN . o0ping Cart
\ / In-Memory cache of
! od cart and suggestions

Reference: Jack Mannino

Jim Manico, 2018

Token Binding

Token Binding

* First-party token binding:
cryptographically bind tokens to a client

* Federated binding: cryptographically bind
security tokens to a TLS connection

https://tools.ietf.org/html/draft-ietf-tokbind-https
https://tools.ietf.org/html/draft-ietf-tokbind-protocol
https://tools.ietf.org/html/draft-ietf-tokbind-negotiation
https://tools.ietf.org/html/draft-ietf-oauth-token-binding

« http://openid.net/specs/openid-connect-token-bound-authentication-
1 0.html

« https://tools.ietf.org/html/draft-ietf-tokbind-ttrp

Jim Manico, 2018

https://tools.ietf.org/html/draft-ietf-tokbind-https
https://tools.ietf.org/html/draft-ietf-tokbind-protocol
https://tools.ietf.org/html/draft-ietf-tokbind-negotiation
https://tools.ietf.org/html/draft-ietf-oauth-token-binding
http://openid.net/specs/openid-connect-token-bound-authentication-1_0.html
https://tools.ietf.org/html/draft-ietf-tokbind-ttrp

R [
LT

It's been a pleasure.

jim.manico@owasp.org

