
Webservice,

Microservice and REST

Security

Jim Manico
(OWASP-Stammtisch München, 9th Nov 2018)

Jim Manico, 2018

A little background dirt…

jim.manico@owasp.org

@manicode

▪ Former OWASP Global Board Member

▪ Project manager of the

OWASP Cheat Sheet Series and

several other OWASP projects

▪ 20+ years of software

development experience

▪ Author of "Iron-Clad Java,

Building Secure Web Applications”

from McGraw-Hill/Oracle-Press

▪ Kauai, Hawaii Resident

2

Jim Manico, 2018 3

WARNING: Please do not attempt to hack any

computer system without legal permission to do so.

Unauthorized computer hacking is illegal and can

be punishable by a range of penalties including

loss of job, monetary fines and possible imprisonment.

ALSO: The Free and Open Source Software presented in these materials are

examples of good secure development techniques. You may have unknown

legal, licensing or technical issues when making use of Free and Open Source

Software. You should consult your company's policy on the use of Free and Open

Source Software before making use of any software referenced in this material.

"API security is going to be a much

bigger topic in 2018. So many

companies think their attack surface

is the website and that 2FA solves

everything but API access is done via

tokens and secrets. API security is at

least a couple of years behind other

types of web security."

Daniel Miessler

https://danielmiessler.com/podcast/

https://danielmiessler.com/podcast/

Jim Manico, 2018

REST History

Introduced to the world
in a PHD dissertation by
Roy Fielding in 2000

Promoted use of
standard HTTP
conventions (HTTP
verbs, error codes, etc)
and resources based
access (endpoints are
nouns and not verbs) to
build stateless
webservices

Http Method
Database

Operation

PUT Update

POST Insert

GET Select

DELETE Delete

Jim Manico, 2018

The Glory of REST

http://martinfowler.com/articles/richardsonMaturityModel.html

Jim Manico, 2018

Level 0 – RPC/POX

http://martinfowler.com/articles/richardsonMaturityModel.html

POST /appointmentService HTTP/1.1

<openSlotRequest date="2010-01-04" doctor="mjones"/>

HTTP/1.1 200 OK

<openSlotList>

<slot start="1400" end="1450">

<doctor id="mjones"/>

</slot>

<slot start="1600" end="1650">

<doctor id="mjones"/>

</slot>

</openSlotList>

Jim Manico, 2018

Level 1 – Resources

http://martinfowler.com/articles/richardsonMaturityModel.html

POST /doctors/mjones HTTP/1.1

<openSlotRequest date="2010-01-04"/>

HTTP/1.1 200 OK

<openSlotList>

<slot id="1234" doctor="mjones" start="1400" end="1450"/>

<slot id="5678" doctor="mjones" start="1600" end="1650"/>

</openSlotList>

Jim Manico, 2018

Level 2 – HTTP Verbs

http://martinfowler.com/articles/richardsonMaturityModel.html

GET /doctors/mjones/jmanico/slots?date=20190104&status=open

HTTP/1.1

HTTP/1.1 200 OK

<openSlotList>

<slot id="1234" doctor="mjones" start="1400" end="1450"/>

<slot id="5678" doctor="mjones" start="1600" end="1650"/>

</openSlotList>

Http Method Database Operation

PUT Update

POST Insert

GET (DANGER) Select

DELETE Delete

Jim Manico, 2018

URL Parameter Leakage

10

Bookmarks

Browser History

Proxy Server Logs

Web Server Logs

Referer Request Headers

Search Engine Crawlers

Jim Manico, 2018

Level 2 – HTTP Response Codes

The PUT/DELETE/PATCH request methods

PUT, DELETE and PATCH are used to update resources in the backend

• PUT creates or replaces a resource at the given URL

• DELETE removes a resource at the given URL

• PATCH performs a partial update of the resource at the given URL

These methods are commonly used in combination with a REST API

• They can only be sent by using JavaScript, never by using HTML

elements

• HTML5 wanted to add this, but they closed the can of worms rather

quickly

@PhilippeDeRyckDR. PHILIPPE DE RYCK

Jim Manico, 2018

HTTP PUT Request

▪ An HTTP PUT request is used to replace a resource, or to create a

new resource where the identifier of the resource is known.

▪ The same security precautions that apply to an HTTP POST request

should also apply to a PUT request.

▪ Never send sensitive data in the query string of an HTTP PUT request

13

$.ajax(

"https://contact-manager.example/contacts/1234",

dataType: "json",

type: "PUT",

data: {

name: "John Doe",

email: "john.doe@example.com"

}

);

Jim Manico, 2018

HTTP DELETE Request

▪ An HTTP DELETE request is used to delete a resource.

▪ The same security precautions that apply to an HTTP POST request

should also apply to a PUT request.

▪ Never send sensitive data in the query string of an HTTP PUT request.

▪ Not all web servers and application frameworks will allow for a

message body in an HTTP DELETE. Therefore, it is sometimes

possible that sensitive cannot be securely sent from an HTTP

DELETE.

14

$.ajax(

"https://contact-manager.example/contacts/1234",

dataType: "json",

type: "DELETE"

);

Jim Manico, 2018

HTTP PATCH Request

▪ An HTTP PATCH request is used to apply partial modifications to a

resource.

▪ The same security precautions that apply to an HTTP POST request

should also apply to a HTTP PATCH request.

▪ Never send sensitive data in the query string of an HTTP PATCH

request.

15

$.ajax(

"https://contact-manager.example/contacts/1234",

dataType: "json",

type: "PATCH",

data: {

email: "john.doe@example.com"

}

);

Jim Manico, 2018

Level 2 – HTTP Response Error Codes

http://martinfowler.com/articles/richardsonMaturityModel.html

POST /slots/1234 HTTP/1.1

<appointmentRequest>

<patient id="jsmith"/>

</appointmentRequest>

HTTP/1.1 201 Created (or) HTTP/1.1 409 Conflict

Location: slots/1234/appointment

<appointment>

<slot id="1234" doctor="mjones" start="1400" end="1450"/>

<patient id="jsmith"/>

</appointment>

Jim Manico, 2018

http://martinfowler.com/articles/richardsonMaturityModel.html#ILoveKirk

HTTP/1.1 201 Created (or) HTTP/1.1 409 Conflict

Location: slots/1234/appointment

<appointment>

<slot id="1234" doctor="mjones" start="1400" end="1450"/>

<patient id="jsmith"/>

<link rel="/linkrels/appointment/cancel"

uri="/slots/1234/appointment"/>

<link rel="/linkrels/appointment/addTest"

uri="/slots/1234/appointment/tests"/>

<link rel="self"

uri="/slots/1234/appointment"/>

<link rel="/linkrels/appointment/changeTime"

uri="/doctors/mjones/slots?date=20100104&status=open"/>

</appointment>

Level 3 – Hypermedia

Jim Manico, 2018

Why?

Level 1 tackles the question of handling

complexity by using divide and conquer, breaking

a large service endpoint down into multiple

resources.

Level 2 introduces a standard set of verbs and

other HTTP artifacts so that we handle similar

situations in the same way, removing

unnecessary variation.

Level 3 introduces discoverability, providing a

way of making a protocol more self-documenting.

Jim Manico, 2018 19

REST Applications

Session Management

The truth is a lot more complicated

Pure REST APIs should be stateless

The server is stateless, and the client provides all the required information

A valid argument for stateless backends is flexible scalability

Purity is rarely a good argument to throw working solutions overboard

An API can just as well keep session state on the server

Makes scalability harder, but not impossible

▪ We have been doing this for 20 years with sticky sessions, session replication, ...

Bringing cookies into the mix at this point makes even less sense

Cookies are known as the state mechanism for HTTP

Nobody prevents your REST API from using cookies to keep state on the client

Don't even ask about the cookies vs. tokens debate

@PhilippeDeRyckDR. PHILIPPE DE RYCK

Three properties of "Session management"

The locality and representation of the data

Where will you keep your session data?

How will you represent your session data?

E.g., server-side vs client-side sessions, session identifiers vs self-contained

JWT tokens

The storage mechanism

How will you store your session data (regardless of what the data really is)?

E.g., cookies vs localStorage vs sessionStorage

The transport mechanism

How will you get the data to the client and back (the essence of a session)?

E.g., cookies vs the authorization header

@PhilippeDeRyckDR. PHILIPPE DE RYCK

Jim Manico, 2018

Why do Webservice Bugs Happen?

• Location in the "trusted" network of your data center gives

false sense of security

• SSRF (Server Side Request Forgery) to Internal REST APIs

• Self describing and predicable nature (hypermedia) of REST

• Complete lack of HTTPS or placement of sensitive data in

URL's

• Complete lack of Authentication or use of weak

authentication

• Complete lack of Authorization or weak authorization design

22

Jim Manico, 2018 23

Server Side Request Forgery (SSRF)

Courtesy of Alvaro Munoz

@pwntester

Jim Manico, 2018 24

Jim Manico, 2018 25

Jim Manico, 2018 26

Jim Manico, 2018 27

%2e%2e%2f%2e%2e%2

f%2e%2e%2f%61%64%

6d%69%6e%2f%72%65

%70%6f%72%74%2f%6

7%6c%6f%62%61%6c

../../../admin/report/global

Jim Manico, 2018 28

UrlBuilder.forHost("http", "foo.com")

.pathSegment("with spaces")

.pathSegments("path", "with", "varArgs")

.pathSegment("&=?/")

.queryParam("fancy + name", "fancy?=value")

.matrixParam("matrix", "param?")

.fragment("#?=")

.toUrlString()

Safe URL Construction

http://blog.palominolabs.com/2013/10/03/creating-

urls-correctly-and-safely/index.html

Jim Manico, 2018

Additional SSRF resources

SSRF Testing Resources

• https://github.com/cujanovic/SSRF-Testing/blob/master/README.md

Nicolas Gregoire talk at AppSecEU of SSRF

• http://www.agarri.fr/docs/AppSecEU15-

Server_side_browsing_considered_harmful.pdf

• https://www.youtube.com/watch?v=8t5-A4ASTIU

Great talk by Orange Tsai at BlackHat and Defcon

• https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-

Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-

Languages.pdf

• http://blog.orange.tw/2017/07/how-i-chained-4-vulnerabilities-on.html

• https://www.youtube.com/watch?v=D1S-G8rJrEk

29

https://github.com/cujanovic/SSRF-Testing/blob/master/README.md
http://www.agarri.fr/docs/AppSecEU15-Server_side_browsing_considered_harmful.pdf
https://www.youtube.com/watch?v=8t5-A4ASTIU
https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf
http://blog.orange.tw/2017/07/how-i-chained-4-vulnerabilities-on.html
https://www.youtube.com/watch?v=D1S-G8rJrEk

Jim Manico, 2018 30

Jim Manico, 2018

HTTPS / TLS
Transport Layer Security

31

Jim Manico, 2018

“Cryptography is only

truly useful if the rest

of the system is also

sufficiently secure

against the attackers.”

Bruce Schneier

Security Engineering

32

Jim Manico, 2018

HTTPS / TLS: When and How

Where should HTTPS be used at minimum?

EVERYWHERE

33

Jim Manico, 2018

Webservice Authentication

34

Jim Manico, 2018

Webservice Authentication and Session Management

• First identify the server via TLS and a certificate

authority of some kind.

• Single Server Consumer Apps: Web Sessions

• Federated Consumer Apps: OpenID Connect

• Stateless Microservices: JWT

• Machine Acting on Behalf of Users: OAuth 2

(Delegation)

• Strict Machine to Machine Communication:

Mutual TLS

Jim Manico, 2018

Webservice Access Control

36

Jim Manico, 2018

INSECURE OBJECT REFERENCE

PYTHON

class PrivateMessagesView(APIView):

def get(self, request, user_id):

"""Get the private messages for a specific user"""

msgs=private_messages(user_id)

return Response(data=msgs, status=200)

class PrivateMessagesView(APIView):

def get(self, request, user_id):

"""Get the private messages for a specific user"""

if request.user.id != user_id:

return Response(data={'msg': 'forbidden'}, status=403)

msgs=private_messages(user_id)

return Response(data=msgs, status=200)

GET https://api.example.com/users/1234/private-messages

Request

Controller: Attack

Controller: Remediation

Jim Manico, 2018

INSECURE OBJECT REFERENCE: DEFENSES

• Verify that data being accessed is owned

by by current authenticated user

• Consider lookup maps between object ids

and user ids or user group ids

• Verify user authorization to objects using a

modern access control design such as

capabilities

Jim Manico, 2018

HTTP METHODS PROTECTION

Ensure that a requesting user is authorized to use a given method

• Anonymous user cannot DELETE a

blog article

• Anonymous user can GET a blog

article

• Admin User can POST, PUT,

DELETE, and GET a blog article

Jim Manico, 2018

UNAUTHORIZED PRIVILEGED ACTIONS:
EXAMPLES

#PYTHON

class AdminCommentsView(APIView):

def delete(self, request, comment_id):

"""Allow an Admin to delete a comment"""

comment=get_comment(comment_id)

comment.delete()

return Response(status=204)

def delete(self, request, comment_id):

"""Allow an Admin to delete a comment"""

comment=get_comment(comment_id)

Does `request.user.id` have permission to "delete" a "comment"

where the "comment_id" is `comment_id`?

perm=\

has_permission(

request.user.id,

'comment',

'comment_id',

comment_id,

'delete')

if not perm:

return Response(data={'msg': 'forbidden'}, status=403)

comment.delete()

return Response(status=204)

Controller: Vulnerable

Controller: Defense

Jim Manico, 2018

Role Based Example

Do not or do not do this!

41

if (user.isRole("JEDI") ||

user.isRole("PADAWAN") ||

user.isRole("SITH_LORD") ||

user.isRole("JEDI_KILLING_CYBORG")

) {

log.info("You may use a lightsaber. Use it wisely.");

} else {

log.info("Lightsaber access violation! ");

}

Jim Manico, 2018

Permission (Claims) Based

Access Control Enforcement Points

42

The Problem

Web Application needs secure access control mechanism

The Solution

if (currentUser.isPermitted("lightsaber:wield")) {

log.info("You may use a lightsaber ring. Use it wisely.");

} else {

log.info("Sorry, lightsaber rings are for schwartz masters

only.");

}

Jim Manico, 2018

Permission (Claims) Based

Access Control Enforcement Points

43

The Problem

Web Application needs secure access control mechanism

The Solution

int shipId = Integer.parseInt(request.getParameter("shipId"));

if (currentUser.isPermitted("starship:drive:" + shipId)) {

log.info("You may drive starship " + shipId);

} else {

log.info("Sorry. You may not drive starship " + shipId);

}

Jim Manico, 2018

Basic Data Contextual Access Control Schema

44

Permission / Feature

Permission ID
Permission

Name
Data Check T/F Data Type ID Customer ID

15 lightsaber:wield F 1

25 starship:drive T 10 1

26 starship:drive F 2

Data Type

Data Type ID Data Name

10 Starship

11 Lightsaber

User / User Group

UID User Name

1 Luke Skywalker

2 Han Solo

Entitlements

User ID Permission ID Role ID/Group ID Data Element ID Data Group Id

1 15

2 25 1138

15 5 (Jedi)

Jim Manico, 2018

Server Side JSON Issues

45

Jim Manico, 2018

JSON SERVER-SIDE

INPUT VALIDATION

Validate that the JSON is
actually correct, parseable

JSON

Start by ensuring that the
JSON is of the correct
format by validating
against a JSON Schema
for each webservice
endpoint.

http://json-schema.org/

Parse the JSON safely

Parse the JSON using a
battle-tested and
updated JSON parser.

JSON parsers have a
history of security
vulnerablities related to
security problems with
serialization and
deserialization.

Parseable JSON may contain
dangerous data!

Even if a JSON string is
correct and parseable
JSON, it can still be
unsafe from wrong data
types.

Use query
parameterization in any
SQL queries which use
JSON input as input
parameters

Use proper XSS defense
if JSON input is used as
output to browser

Jim Manico, 2018 47

http://json-schema.org/examples.html

http://json-schema.org/examples.html

Jim Manico, 2018

JSON parsers are mostly insecure

48

Alvaro Muñoz – July 2017 – Blackhat
Security Research with HPE @pwntester

Jim Manico, 2018

https://github.com/google/gson

49

Jim Manico, 2018

Should you trust all JSON? (no)

{

"first_name":

"' or 1=1-- ",

"homepage":

"http://www.bad.com/packx1/cs.jpg?&cmd=uname%20-a",

"username":

"*)(uid=*))(|(uid=*",

"email":

"woot'or'1'!='ing@manico.net",

"profile_image":

"../../../../../../../etc/passwd",

"image_tag":

"",

"bio":

"<script>document.body.innerHTML='<h1>TomWazHere';</script>"

}

50

Jim Manico, 2018

XML

51

Jim Manico, 2018

XML Input Parsing Security Checklist

• Do not allow input documents to contain DTDs

• Do not expand entities

• Do not resolve external references

• Impose limits on recursive parse depth

• Limit total input size of document

• Limit parse time of document

• Use an incremental or stream parser such as SAX for

large documents

• Validate and properly quote arguments to XSL

transformations and XPath queries

• Do not use XPath expression from untrusted sources

• Do not apply XSL transformations that come untrusted

sources

Credit: https://pypi.python.org/pypi/defusedxml#how-to-avoid-xml-vulnerabilities

Jim Manico, 2018

XML Schema Validation

<?xml version="1.0" encoding="UTF-8" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="shiporder">

<xs:complexType>

<xs:sequence>

<xs:element name="orderperson" type="xs:string"/>

<xs:element name="shipto">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="address" type="xs:string"/>

<xs:element name="city" type="xs:string"/>

<xs:element name="country" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

53

http://www.w3schools.com/XML/schema_example.asp

Jim Manico, 2018

XML EXTERNAL ENTITY PROCESSING

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///etc/passwd" >

]>

<foo>&xxe;</foo>

Remediation

Specify the option to the XML parser to make sure it does not include external entities

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

Jim Manico, 2018

XEE Prevention in Java/JAXP

// Document Builder

DocumentBuilderFactory dbf=DocumentBuilderFactory.newInstance();

dbf.setAttribute({{XMLConstants.ACCESS_EXTERNAL_DTD}}, "");

dbf.setAttribute({{XMLConstants.ACCESS_EXTERNAL_SCHEMA}}, "");

dbf.setAttribute({{XMLConstants.ACCESS_EXTERNAL_STYLESHEET}}, "");

// SAX Parser

SAXParserFactory spf=SAXParserFactory.newInstance();

SAXParser parser=spf.newSAXParser();

parser.setProperty({{XMLConstants.ACCESS_EXTERNAL_DTD}}, "");

parser.setProperty({{XMLConstants.ACCESS_EXTERNAL_SCHEMA}}, "");

parser.setProperty({{XMLConstants.ACCESS_EXTERNAL_STYLESHEET}}, "");

// XML Input

XMLInputFactory xif=XMLInputFactory.newInstance();

xif.setProperty({{XMLConstants.ACCESS_EXTERNAL_DTD}}, "");

xif.setProperty({{XMLConstants.ACCESS_EXTERNAL_SCHEMA}}, "");

xif.setProperty({{XMLConstants.ACCESS_EXTERNAL_STYLESHEET}}, "");

// Schema

SchemaFactory schemaFactory=SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);

schemaFactory.setProperty({{XMLConstants.ACCESS_EXTERNAL_DTD}}, "");

schemaFactory.setProperty({{XMLConstants.ACCESS_EXTERNAL_SCHEMA}}, "");

schemaFactory.setProperty({{XMLConstants.ACCESS_EXTERNAL_STYLESHEET}}, "");

// Transformer

TransformerFactory factory=TransformerFactory.newInstance();

factory.setAttribute({{XMLConstants.ACCESS_EXTERNAL_DTD}}, "");

factory.setAttribute({{XMLConstants.ACCESS_EXTERNAL_SCHEMA}}, "");

factory.setAttribute({{XMLConstants.ACCESS_EXTERNAL_STYLESHEET}}, "");

Disable all external entity references

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

Jim Manico, 2018

XML EXPONENTIAL ENTITY EXPANSION

<?xml version="1.0"?>

<!DOCTYPE lolz [

<!ENTITY lol "lol">

<!ENTITY lol2 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">

<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">

<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">

<!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">

<!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">

<!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">

<!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">

<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">

]>

<lolz>&lol9;</lolz>

Remediation

• Disable DTD inclusion in document

• Set depth limits on recursive parsing

• Set memory limits for parser

"Billion Laughs Attack"

Jim Manico, 2018

XSLT Injection

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<xsl:copy-of select="document('/etc/passwd')"/>

</xsl:template>

</xsl:stylesheet>

Python

def get(self, request):

xml=StringIO(request.POST['xml'])

xslt=StringIO(request.POST['xslt'])

xslt_root=etree.XML(xslt)

transform=etree.XSLT(xslt_root)

result_doc=transform(xml)

res=etree.tostring(result_doc)

return Response(res)

Credit: http://www.hpenterprisesecurity.com/vulncat/en/vulncat/php/xslt_injection.html

Never process untrusted user XSLT transformations!

Jim Manico, 2018

Tokens

58

Jim Manico, 2018

JWT is an open standard to exchange information

JWT tokens represent easy-to-exchange data objects

Content is signed to ensure integrity

Content is base64-encoded, to ensure safe handling across the web

JWT supports various kinds of algorithms

E.g. signature with one shared key on the server-side, for use within

one application

E.g. signature with a public/private key pair, for use across

applications

The standardized way to exchange session data

Part of a JSON-based Identity Protocol Suite

▪Together with specs for encryption, signatures and key exchange

Used by OpenID Connect, on top of OAuth 2.0

59

Jim Manico, 2018

A JWT is a base64-encoded data object

{

"alg": "HS256",

"typ": "JWT"

}

{

"iss": ”distrinet.cs

.kuleuven.be",

"exp": 1425078000000,

"name": "philippe",

"admin": true

}

HMACSHA256(

base64UrlEncode(header)

+ "." +

base64UrlEncode(payload),

“secret”

)

Header Payload Signature

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJkaXN0cmluZXQuY3Mua3VsZXV2

ZW4uYmUiLCJleHAiOjI0MjUwNzgwMDAwMDAsIm5hbWUiOiJwaGlsaXBwZSIsImFkbWluIjp0c

nVlfQ.dIi1OguZ7K3ADFnPOsmX2nEpF2Asq89g7GTuyQuN3so

60

Jim Manico, 2018

JSON Web Tokens or "JOT's"

https://www.notsosecure.com/crafting-way-json-web-tokens/

63

Jim Manico, 2018

JWT represents data, not the transport mechanism

The cookies vs tokens debate can be a bit confusing

Cookies are a transport mechanism, just like the Authorization header

Tokens are a representation of (session) data, like a (session) identifier

JWT tokens can be transmitted in a cookie, or in the Authorization header

Defining how to transmit a JWT token is up to the web application

This choice determines the need for JavaScript support and CSRF defenses

Modern applications typically use JWT in the Authorization header

Frontend JavaScript apps can easily put the token into the Authorization header

JWT tokens are easy to pass around between services in the backend as well

64

Reference: Dr. Philippe De Ryck

Jim Manico, 2018 65

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

Jim Manico, 2018

#1 - Learn about the underlying security

properties

JWTs are not necessarily easier than other mechanisms

They use a standardized format (JSON)

JWTs look simple enough at the surface, but they’re actually fairly complex

They can be deployed in various different modes

There’s a plethora of cryptographic options

Getting the desired security properties depends on making sane choices

No need to be a crypto expert, but you should know about HMAC, encryption, …

If libraries make them for you, do a sanity-check before using it

66

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

Jim Manico, 2018

HMAC’s in Action for YubiHSM

▪ KEY for HMAC stored in

local key database only,

not retrievable

▪ Key handle is the HSM ID

▪ Data is password or KDF

of Password

▪ HMAC @ Final is final

computed password hash

67

HMAC-SHA1

Key

Handle

Reset/F

inal
Data

Key Data

Base

HMAC @ Final

Y
u
b
iH

S
M

Diagram © Yubico, reproduced under the fair use doctrine.

Jim Manico, 2018

#2 – Don’t go overboard

A piece of advice that applies everywhere: Keep It Simple
Make sure you really understand what you need

Select the simplest option to meet your needs

Concrete guidelines for using JWT tokens
Don’t store unnecessary data

Don’t encrypt if you don’t need confidentiality

An HMAC suffices for simple services

Public key-based signatures are useful for large, distributed setups

If you need JWT tokens on a simple service, an HMAC probably suffices
A shared key known by all servers that need to validate a JWT

68

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

Jim Manico, 2018

#3 - Plan for how you will manage your keys

JWTs depend on crypto keys for signatures (and encryption)

Key management is not an easy problem

A couple of questions that you want to think of up front

How will you go about using a new key?

What happens if a server gets compromised?

How many services share key material, and need to be updated?

Encryption and signature keys should be rotated frequently

Frequency depends on the usage, but this still needs to be taken into account

69

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

Jim Manico, 2018

#4 - consider using "headless" JWTs

JWTs are untrusted data and need to be verified before using them

But all of the data used to verify them is right inside the token (except for the keys)

In 2015, two vulnerabilities in most libraries allowed JWT forgery

#1: many libraries accepted JWTs with the “none” signing algorithm

#2: libraries could be tricked to use an RSA public key as the key for an HMAC

70

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

Jim Manico, 2018

#6 - Consider JWT lifetimes and revocation

Long lifetimes for JWTs with session information can be problematic

What if the JWT is stolen?

How will you handle revocation?

A lot of people are bashing JWTs for lack of revocation

But this is true for any kind of client-side session object, regardless of the format

Revocation with server-side sessions is easy, but hard for client-side sessions

Embedding unique IDs in a JWT and keeping a blacklist is often

recommended

The blacklist needs to be checked during token revocation

But to blacklist you need to know all your JWT identifiers …

72

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

Jim Manico, 2018

Side note on revocation

Why not associate a counter value with each user

Embed the counter into the JWT, and keep a copy in the database

More lightweight than keeping track of issued identifiers

Revoking JWTs for a user account is as simple as incrementing the counter

Validating a JWT requires a check against the stored counter value

A match means that the JWT is not revoked

A stored counter value that is higher than the JWT value means revocation

73

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

Jim Manico, 2018

#7 - Read the Security Considerations!

The different aspects of JWTs are covered by various RFCs

RFC 7515: JSON Web Signatures

RFC 7516: JSON Web Encryption

RFC 7517: JSON Web Key

RFC 7518: JSON Web Algorithms

Understand the differences between headers, cookies, tokens, …

Make educated decisions about what to use where

Spread the word about what we have covered here!

74

https://dev.to/neilmadden/7-best-practices-for-json-web-tokens

Jim Manico, 2018 75

Reference: Jack Mannino

Jim Manico, 2018

Token Binding

76

Jim Manico, 2018 77

• First-party token binding:

cryptographically bind tokens to a client

• Federated binding: cryptographically bind

security tokens to a TLS connection

Token Binding

• https://tools.ietf.org/html/draft-ietf-tokbind-https

• https://tools.ietf.org/html/draft-ietf-tokbind-protocol

• https://tools.ietf.org/html/draft-ietf-tokbind-negotiation

• https://tools.ietf.org/html/draft-ietf-oauth-token-binding

• http://openid.net/specs/openid-connect-token-bound-authentication-

1_0.html

• https://tools.ietf.org/html/draft-ietf-tokbind-ttrp

https://tools.ietf.org/html/draft-ietf-tokbind-https
https://tools.ietf.org/html/draft-ietf-tokbind-protocol
https://tools.ietf.org/html/draft-ietf-tokbind-negotiation
https://tools.ietf.org/html/draft-ietf-oauth-token-binding
http://openid.net/specs/openid-connect-token-bound-authentication-1_0.html
https://tools.ietf.org/html/draft-ietf-tokbind-ttrp

It’s been a pleasure.

jim.manico@owasp.org

