

Jeff Williams, CEO

OWASP AppSec DC

April 4, 2012

How do

we find

vulns?

Static

Analysis
Manual Code

Analysis

Dynamic

Analysis

Manual

Testing

Threat

Modeling

Architecture

Review

Manual Scan

Spend Pray

Portfolio

Assurance

Strategies

5|0|8|http://tester:8888/testapp

/|9E4CB3D5635C548906BFB576DD18C7

10|com.test.app.client.GreetingS

ervice|greetServer|[Ljava.lang.S

tring;/2600011424|hi|there|blah|

1|2|3|4|1|5|5|3|6|7|8|%26ping%20

-n%2020%20127.0.0.1%26

Ajax

Web
Services

Serialized
Objects

Mobile

WebSocket

Scanning and

pentesting are about

to get a LOT harder.

* GWT message courtesy GDS

Static analysis and

code review are about

to get a LOT harder.

Lines of
Code

Libraries
and
Frameworks

AOP

Custom
Controls

DevOps

We can do

better.

We have to do

better.

What does a vuln look like?

DB

Untrusted Input

Source

Propagator

Control (Validator)

Propagator

Propagator

Control (Encoder)

Trigger

Problems

Manual
pentesting
and DAST
can’t see in

SAST and
code review
can’t see out

No way to
map code to
HTTP

Reimagining

the pentest.

Security Intel

Application Tests

Parameter use

Session update

Dangerous call

Test for XSS…

…HTML

“Manual”

IAST

https://www.aspectsecurity.com/spyfilter/

Another free

and open

tool!

Spy

Filter

Wrapped request,

response, session, writers,

outputstream

All access to

wrappers

generates

events Adding &spy to

any visited URL

gets the trace!

Better

scanning.

Results

Application Tests

Queries,

Exceptions,

Logs…

Test for SQLi…

…HTML

“Basic”

IAST

HP WebInspect SecurityScope

 IBM GlassBox

Acunetix

1. Improve DAST

Coverage

2. Validate DAST

Vulnerabilities

3. Correlate with Code

for DAST Findings

Architecture

review?

Basic IAST plus:

• All libraries used

• Exact SLOC count

• Backend connections

• System configuration

• Security controls

• Directory structure

• Entry points

“Advanced”

IAST

Add calls to source code

Use Aspect-oriented programming

Modify class files on disk

Modify bytecode of running application

with “Instrumentation API”

The Future!

“Pure” IAST

DB

Detailed IAST plus:

• No SAST/DAST

• Powerful rule engine

• Easy install

• Data flow analysis

• Continuous security

• Leverage QA testers
Aspect

“Contrast” in

private beta

Continuous

Security!

No More Reports

In the future, security
reports are replaced by
realtime dashboards with
IAST results!

Security Alert!

The Future of IAST

Automatic:

• Portfolio (prioritized)

• Libraries (analyzed)

• Architecture (summary)

• Vulnerabilities (traced)

GOAL: continuous testing

with an enterprise ruleset!
Instrumented

Enterprise

NSA Center for Assured Software

• Seven tools

• 13,801 Test Cases

• 527 flaw types

• Various data and
control flows

• 85% of problems
were not
“discriminated” by
ANY tools

28

http://www.appsecusa.org/p/nsacas.pdf

No
Tools

85%

http://www.appsecusa.org/p/nsacas.pdf

Results with False Alarms

29

