
A SANS Product Review
Written by Jacob Williams

April 2015

Sponsored by
HP

Protection from the Inside:
Application Security Methodologies Compared

©2015 SANS™ Institute

Web applications are a common source of compromise and the vector attackers often
use to penetrate a network. They are often complex and developed by those with little
understanding of security in software development. Fundamental misunderstandings of
security by those responsible for custom code development in our environments too often
lead to compromises, with disastrous results.

What will help keep organizations safe, while allowing the flexibility that web application
designers demand? Many in the industry suggest that a web application firewall (WAF) is
the answer. WAF filtering technology normally sits in front of a web application, inspecting
incoming traffic for attack patterns and preventing those inputs from reaching the web
application itself. However, a WAF is only as good as its signature base and pattern-
matching engine, and bypassing WAF filtering is an active topic of security research.

So begins a cat-and-mouse game, where attackers research new and clever ways to create
malicious inputs that cause undesired application behavior while bypassing the WAF’s
input filters. (After all, the WAF doesn’t truly understand what the application will do with
the input, so it must block any input that could cause an exploit, whether or not it would.)

What if, rather than monitoring for potentially malicious inputs, you could monitor the
application itself and block only those inputs that actually changed the behavior or
operation of the application? Such an approach would render filter bypasses impossible
and increase true positive rates.

This approach is the idea behind runtime application self-protection (RASP), which Gartner
defines as a security technology built or linked into an application runtime environment
to control execution and prevent real-time attacks.1 HP Application Defender (hereafter,
“App Defender”), the focus of this review, adds this protection to servers hosting any
Java or .NET application by loading an agent into the Java Virtual Machine (JVM) or .NET
Common Language Runtime (CLR). The agent establishes program points App Defender
uses to identify attacks in the application code itself, providing RASP functionality without
touching the application code. Implementing App Defender is a simple matter of installing
the agent and restarting the application server; the agent instruments the application at
strategic locations in the code, automatically protecting vulnerable library calls before
attackers can exploit them.

In this review, we compare App Defender to an unnamed WAF, examining their respective
preventive and detective capabilities. Where WAFs simply put up a wall in front of the
application, RASP protects the application from the inside out. Its instrumentation of
the runtime environment enables the mitigation of vulnerabilities without access to the
source code. When tested against the WAF, App Defender caught more events, reduced
false positives and improved visibility into vulnerabilities, including those weaknesses we
didn’t know we had.

SANS ANALYST PROGRAM
Protection from the Inside: Application Security Methodologies Compared1

Introduction

1 “Runtime Application Self-Protection (RASP),” Gartner IT Glossary, retrieved February 27, 2015;
www.gartner.com/it-glossary/runtime-application-self-protection-rasp

SANS ANALYST PROGRAM
Protection from the Inside: Application Security Methodologies Compared2

Consider this statement from
Rackspace, which offers the
option of protecting web
applications with a hosted
WAF:

“The [vendor name redacted]
WAF will fail open, which
means that while traffic to
the web application will not
be blocked in the event of a
failure, traffic will also not be
monitored for web attacks.”

WAF Versus RASP: Comparing Capabilities

Before examining the results of our testing, we provide a definition of WAFs and their
shortfalls and explain why RASP frameworks matter. WAFs intercept requests to a
potentially vulnerable web application applying rules to evaluate whether a request
contains input that might exploit the application; this process requires tedious
configuration, and WAFs may fail open under high load, leaving web applications
vulnerable at precisely the moment when they most need protection. For a WAF
to function at its peak, you need to know what the vulnerable inputs to the web
application are so you can apply the appropriate protections to these input fields.

In contrast, RASP frameworks integrate with the underlying code libraries and protect
the vulnerable areas of the application at the source level. When a client makes a
function call containing parameters that might cause harm to the web application,
RASP intercepts the call at runtime—logging or blocking the call, depending on the
configuration. This method of protecting a web application differs fundamentally
from a WAF.

Uses for WAFs

Security consultants have a love–hate relationship with WAFs, because they are usually
most effective the day they enter service and gradually become less effective over the
course of subsequent months.

The reason for this decline in effectiveness is that WAF deployment often takes place
in response to some penetration test or security incident after the organization
performs a cost analysis and decides a WAF deployment is less expensive than fixing
the application’s source code. (In some cases, this decision is easy: The source is simply
unavailable.) During the WAF deployment, everyone involved understands exactly which
form fields and inputs are vulnerable and to which attack categories, but over time, this
knowledge fades.

Many organizations lack the in-house expertise to conduct penetration tests every
time they change the web application or WAF configuration (and miss the opportunity
to ensure a vulnerability was not introduced). Other departments in the organization
inevitably expand the WAF’s role to protect additional applications, stressing the WAF
beyond its original specifications. Eventually, the WAF is no longer able to keep up with
demand under heavy load and fails. In order to ensure that web applications remain
available, vendors typically set WAF appliances to “fail open” by default so the application
continues to function. The worst part about this scenario is that the attacker can trigger
a high-load condition remotely by sending abnormally large volumes of traffic, thereby
triggering the fail-open.

WAF Versus RASP: Comparing Capabilities (CONTINUED)

SANS ANALYST PROGRAM
Protection from the Inside: Application Security Methodologies Compared3

RASP Capabilities

RASP and WAFs protect applications in fundamentally different ways. Consider WAFs to
be the gloves and masks medical personnel use when dealing with an infected patient.
These barriers might block germs from entering the body, but gloves and masks do
not protect against all infections. RASP, in this example, is a vaccine that protects the
application from attack, even if bad inputs get in.

Table 1 compares the basic characteristics and functions of RASP tools and WAFs.

Table 1. Comparison of RASP and WAF Characteristics

Accuracy

Time to Value

Reliability

Platforms

Visibility

Network Protocols

Language
Coverage

Maintenance

RASP

Detection of malicious input only when
passed to library calls where exploitation
would occur. Monitors inbound and
outbound data and logic flows.

No need to know locations of existing
vulnerabilities in application code;
can act as a virtual patch against a
vulnerability.

Will not fail open under high load—code
is always instrumented, regardless of
server load.

Any instrumented application.

May provide detailed feedback to
developers to show how to remediate
code vulnerabilities.

Protocol agnostic; handles HTTP, HTTPS,
AJAX, SQL and SOAP with equal ease.

Theoretically language agnostic but
requires complicated, language-specific
builds—currently known products
support .NET and Java.

Automatically understands changes to
the application.

WAF

Detection based on naïve pattern
matching, without considering
whether the input would be passed to
vulnerable code.

Requires extensive testing and
configuration to adequately cover the
application.

Single point of failure; likely to fail open
under high load, leaving the formerly
protected web application vulnerable.

Web applications.

Offers no detailed insight into the
application.

Must be able to understand the
application’s network communication.

Language agnostic; not bound by
programming language type.

Can gain application context through
training only; requires regular
maintenance to stay in sync with
application changes.

The rest of this paper discusses the testing of threat detection in App Defender and the
generic WAF. Table 2 shows the key differences in their performance.

We discuss specific findings in the following sections.

Attack Classes Tested

We tested both App Defender and the WAF for their capability to detect the common
classes of attacks, including SQL injections, cross-site scripting (XSS) and forceful
browsing. The results appear in Table 3; a detailed discussion of our findings in each class
follows the table.

SANS ANALYST PROGRAM
Protection from the Inside: Application Security Methodologies Compared4

Detecting Threats and Vulnerabilities

Table 2. Key Differences Found in Testing

App Defender

Detected more attack classes

Accurately recognized most attack types

Detected unknown vulnerabilities

Examined output as well as input

Lacks granular rule configuration

WAF

Lack of application-level instrumentation
allowed some attack classes to escape detection

Generated some false positives, particularly
when evaluating SQL injection suspects

Unable to detect unknown vulnerabilities in
code, such as unhandled exceptions

Focused solely on input

Granular configuration options make
implementation complex

Table 3. Comparison of Attack Classes Detected by App Defender and a Traditional WAF

Attack Class

Cross-Site Scripting (XSS)

Command Injection

ShellShock

Query Injection

Unhandled Exception

Missing Content-Type

Missing Accept Header

Unsupported Method

Vulnerability Scanners

Forceful Browsing

Method Call Failure

Sensitive Data Disclosure

App Defender Detection

Yes

Yes

Yes

Sometimes; detected SQL injection
strings only when passed to queries,
but missed XPath injection

Yes

Yes

Yes

Yes

Yes

Sometimes; only for configured
extensions

Yes

Yes

WAF Detection

Yes

Yes

Yes

Excessive; naïve pattern matching
detected all inputs, including false
positives

No

Yes

Yes

Yes

Yes

Superlative; offers better
configuration options than App
Defender

No

No

Detecting Threats and Vulnerabilities (CONTINUED)

SANS ANALYST PROGRAM
Protection from the Inside: Application Security Methodologies Compared5

It is also worth noting that App Defender is able to provide specific information, making
remediation efforts much more efficient. A WAF cannot provide this insight.

Cross-Site Scripting

Cross-site scripting (XSS) is an attack where JavaScript input sent by the attacker is then
reflected back to a website user. This input may then be used to steal authentication
cookies from the user or redirect them to a malicious website.

The App Defender agent detects XSS attacks with little trouble. Our testing showed
it detects an XSS attack by matching on the string <script anywhere in a request
parameter and preventing the upload of any input containing this string. App Defender
effectively prevents the insertion of new XSS input to the web application, but at the risk
of triggering a false alert if users are allowed to upload JavaScript (to a message board,
for instance).

 Although App Defender does a commendable job defending against reflected XSS and
preventing the insertion of new, stored XSS, it cannot shield against stored XSS attacks
that rely on preloaded malicious content transferring from an unprotected database to
a protected one. The WAF also failed to detect this stored XSS attack. In order for any
solution to detect this type of attack, it would have to examine all JavaScript returned
to the user for potential malicious applications, which would likely have either abysmal
detection rates or astronomically high false positives and a large impact on availability.

Command Injection

Command injection is one of the most potentially damaging attacks on a web
application; it occurs when developers accept untrusted user input and use it as part
of a shell command without first filtering out dangerous characters. Unlike XSS (which
attacks the browser) or SQL injection (which obtains data), command injection goes
after the server directly, executing code in the context of the user running the web
application. Unfortunately, some administrators still run their web servers as the root
user and, in such a case, command injection vulnerabilities result in total compromise of
the machine running the web application. Even in cases where a non-root user runs the
web application, command injection vulnerabilities are devastating and allow attackers
to pivot their attacks from the web server to internal hosts.

The App Defender agent detected command injection reliably, even when the actual
command injection attack would not have been successful in executing code on the
server because of syntax issues. We attempted multiple filtering evasions, but App
Defender caught the attack every time. The WAF also caught the command injection
attempts because they contained character combinations that benign user scripts
typically lack.

Detecting Threats and Vulnerabilities (CONTINUED)

SANS ANALYST PROGRAM
Protection from the Inside: Application Security Methodologies Compared6

ShellShock

The ShellShock vulnerability is akin to command injection, exploiting the behavior of
the bash shell to execute arbitrary code when malicious function definitions pass to the
shell through User-Agent strings or other request parameters.2 Although web servers
with up-to-date patches should be able to fend off ShellShock, the App Defender action
of blocking for this attack by default is definitely appropriate.

App Defender detects ShellShock by searching for the string ()[space]{ at the beginning
of a form field, but its documentation does not address whether App Defender would
detect the string elsewhere in a request.3 We confirmed that this string correctly
triggered alerts for ShellShock attacks, whatever its position in the request parameter.4
The WAF also detected these characters at all positions in a form field and identified the
ShellShock attacks.

Query Injection

Query injection uses inputted data to force the targeted system into an error condition
that returns unintended data to the attacker. This can take the form of queries sent in
real time or stored for future use. Query injection commonly appears in attacks against
SQL databases but can occur in any data environment that supports a query language.

SQL injection attacks pass input that changes a SQL query’s developer-intended
structure into a pathway for the attacker. App Defender attempts to tokenize the query
and look for 1 = 1 statements and other unusual SQL syntax, which are indicative of
common SQL injection patterns. (App Defender’s documentation correctly cautions
that developers with lazy programming habits may make legitimate use of queries
containing these strings.)

RASP offers the unique capability to perform context-sensitive detection. With
traditional WAF solutions, detection must focus on all input fields or be limited to those
fields an administrator defines in advance.

2 ShellShock Vulnerability Checker, https://shellshocker.net;
“Alert (TA14-268A),” US-CERT website, September 23, 2014; www.us-cert.gov/ncas/alerts/TA14-268A;
“Vulnerability Summary for CVE-2014-6271,” National Vulnerability Database, December 23, 2014;
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-6271

3 There is almost no reason for this character string to appear in a legitimate request, so the risk of false-positive alerts is low.
4 At the time of testing, the App Defender documentation did not reflect this capability.

RASP offers the

unique capability

to perform context-

sensitive detection,

whereas traditional

WAF solutions focus

on all input fields or

are limited to fields

defined in advance.

Detecting Threats and Vulnerabilities (CONTINUED)

SANS ANALYST PROGRAM
Protection from the Inside: Application Security Methodologies Compared7

The problem with the WAF approach is that creating a usable configuration requires
some prior knowledge of the vulnerable fields, while the RASP approach suffers from
potential false positives thanks to naïve pattern matching. However, because App
Defender inspects input at the time it passes to the database query strings, it eliminates
false-positive detections for fields not vulnerable to SQL injection so the administrator
does not waste time chasing attacks that don’t apply to his environment. On the other
hand, the WAF still detected this as an attack, resulting in a false positive, as shown in
Figure 1.

Figure 1. False-Positive SQL Injection

In addition to testing for naïve SQL patterns (such as or 1=1), we attempted several
other tautologies, hoping to extract additional data from the database. Although such
tautologies sometimes bypass WAF technologies, App Defender caught them all. The
App Defender agent appeared to match our strings against blacklisted parameters,
including any quotes and Boolean operators passed to the SQL query string. This result
makes sense, because any query including a Boolean operation would necessarily
change the structure of the query.

However, the naïve pattern matching of WAFs may sometimes be the best tool for the
job; one example of this is testing for XPath injection, another class of query injection
attacks.5 App Defender failed to detect a basic XPath injection string that the WAF
detected. (Our analysis of the underlying code appears to indicate that when the input
strings do not pass directly to a SQL library call—as was the case in this example—the
App Defender agent does not detect the query injection.) Figure 2 shows a typical XPath
injection using tautologies.

Figure 2. XPath Injection Using Tautologies

5 The XPath query language extracts data from an XML database—used by some web applications to store data—in much the
same fashion as SQL.

Detecting Threats and Vulnerabilities (CONTINUED)

SANS ANALYST PROGRAM
Protection from the Inside: Application Security Methodologies Compared8

App Defender’s application-level instrumentation detected all of our standard SQL
injection attempts but missed query injection attacks that did not use standard SQL
libraries. (Although our WAF also caught our SQL injection attempts, instrumentation
through RASP offers better theoretical protection against SQL injection attacks than do
firewall technologies like WAF. We expect RASP’s low-level instrumentation would likely
catch future evasion techniques that use SQL injection to bypass WAF.)

Forceful Browsing

App Defender protected successfully against forceful browsing attacks, although
configuring this protection is not what some experienced users might anticipate
or desire. The App Defender agent checks for these file extensions and only these
extensions: .log, .bak, .old, _log, _bak and _old. Other extensions could reflect
forceful browsing as well; extensions commonly seen during penetration tests include
.1, .2, .2015 (the year) and .012015 (the month and year). Although it’s not possible
to configure App Defender to detect these additional extensions, most WAFs can block
access to all such extensions.

Method Call Failure

Method call failures exist only in programming languages that support object-oriented
programming. These errors usually occur when an object of one type improperly calls
a method from its base class. Bugs of this nature are particularly dangerous because
they may remain hidden if they do not generate error logs or other obvious output. App
Defender can detect method call failures when SQL exceptions occur during database
transactions, an example of a method call failure that occurs without displaying any
output to the user.

Testing for method call failures can identify underlying vulnerabilities as well as attacks.
During our review, App Defender detected a number of previously unknown errors in
the web application we used for our tests. None of these errors appeared in standard
web application logs, and none displayed to the user. Although such errors in a web
application are often invisible to users, an attacker might be able to exploit them by
using novel or unusual attack code. App Defender detects these errors by instrumenting
the API calls themselves, rather than examining the output, making it useful for
identifying underlying application errors in a production environment.

Detecting Threats and Vulnerabilities (CONTINUED)

SANS ANALYST PROGRAM
Protection from the Inside: Application Security Methodologies Compared9

An example of App Defender’s output from a method call failure appears in Figure 3.

Figure 3. Method Call Failure

In contrast, no WAF, even one that filters responses, could detect method call failures if
the web application did not display errors.

Unhandled Exceptions

Unhandled exceptions can give the attacker insight into how an application functions.
One potential risk is that the stack trace output from the server may reveal the
application’s use of vulnerable libraries to the attacker and provide him with a roadmap
for his assault.

We deliberately configured the web application we tested to throw unhandled
exceptions, mimicking a common misconfiguration of web applications. Figure 4
displays a typical App Defender stack trace from an unhandled exception.

Detecting Threats and Vulnerabilities (CONTINUED)

SANS ANALYST PROGRAM
Protection from the Inside: Application Security Methodologies Compared10

Figure 4. Unhandled Exception Revealed in Stack Trace

App Defender was able to detect these exceptions. Meanwhile, the WAF did not detect
the unhandled exceptions. No such thing as a universal input that triggers an unhandled
exception exists, leaving the WAF (focused on input) with no way to detect such
exceptions.

Privacy Violations

Even though exposures of sensitive data can lead to big fines, developers often do
not realize where their apps have stored sensitive information, and even audited
applications may disclose sensitive data while under attack. Applications may write
sensitive data to their log files, especially when the application fails in response to
attack input. An attacker can then use his access to the web application to examine the
application log files to retrieve sensitive data, including payment card numbers.

Even though

exposures of sensitive

data can lead to big

fines, developers often

do not realize where

their apps have stored

sensitive information.

Detecting Threats and Vulnerabilities (CONTINUED)

SANS ANALYST PROGRAM
Protection from the Inside: Application Security Methodologies Compared11

App Defender has two rule categories for detecting sensitive information: credit card
numbers and Social Security numbers (SSNs), two of the data items attackers are most
likely to want. The default action for both rules is to rewrite (or mask) the output, an
operation that offers an optimal blend of usability and security. In the event the output
of sensitive data was the result of normal operation and not an attack, the operation still
proceeds, but with the sensitive data masked in the log file.

Figure 5 shows an example of App Defender detecting sensitive data as it is sent to
server log files.6

Figure 5. Sensitive Data Detection

Detecting and masking such values at the library call level could prevent a compliance
violation in breach scenarios where sensitive data is not blocked even though the
application itself was exploited. The credit card and SSN algorithms App Defender used
matches the patterns; for example, ###-##-#### for an SSN. However, organizations need
to configure App Defender to recognize and mask other patterns—such as the filtering
of medical record numbers or bank account numbers, features currently missing from
the product.

Not only did App Defender detect the sensitive data where the WAF did not, but also we
believe its functionality may be useful to auditors who wish to find in the application
unanticipated locations that hold sensitive data.

6 App Defender’s documentation incorrectly stated that it masks sensitive data in HTTP responses; actually, it masks such data only
when writing to external files, because masking sensitive data returned in HTTP responses can cause problems with database updates.

Detecting Threats and Vulnerabilities (CONTINUED)

SANS ANALYST PROGRAM
Protection from the Inside: Application Security Methodologies Compared12

Unsupported Method

App Defender protects against requests that employ infrequently used HTTP request
methods; it treats any HTTP methods other than GET, POST and PUT as “unsupported”
methods. (However, some poorly coded clients may send these request methods in
mixed case, triggering false alerts.) Other requests may also be required for protected
applications, which might legitimately support methods such as DELETE, OPTIONS
or TRACE. RASP products need to support such functions in their libraries and should
provide a means to configure alternative options to better handle such cases.

(Then again, our voyage through the configuration notes for the WAF we used made it
clear that enabling the detection of unsupported HTTP requests on a traditional WAF is
possible, but not for the faint of heart.)

Both App Defender and the WAF successfully detected unsupported HTTP methods. App
Defender’s information screen for this attack appears in Figure 6.

Figure 6. Unsupported HTTP Request Method

Missing Content-Type

Attackers may bypass file type upload restrictions by not specifying anything for content-
type in the request header. Both App Defender and the WAF were able to detect this
attack vector with ease. App Defender’s display of one such attack appears in Figure 7.

Figure 7. Typical Display of a Missing Content-Type Attack

Detecting Threats and Vulnerabilities (CONTINUED)

SANS ANALYST PROGRAM
Protection from the Inside: Application Security Methodologies Compared13

Missing Accept Header

HTTP does not strictly require accept headers—which tell the application server what
languages or character sets the client supports—but virtually all legitimate clients send
them as part of the request. Many automated scanning engines fail to include these
headers, making this a potential early warning sign of an automated attack. Both App
Defender and the WAF detected the missing Accept header. App Defender’s detailed
output is shown in Figure 8.

Figure 8. Missing Accept Header in HTTP Request

Known Vulnerability Scanners

Vulnerability scanners often embed a predefined user agent string in their probes
and—for obvious reasons—security analysts seek to prevent attackers from using them.
Both App Defender and the WAF detected the user agent strings of known vulnerability
scanners, although the list of vulnerability scanners App Defender can detect is not
documented and not configurable. For this reason, some security analysts may prefer
the flexibility of a fully configurable WAF solution. Figure 9 shows a typical message
generated by App Defender when detecting a vulnerability scan through examination of
the user agent string.

Figure 9. Vulnerability Scanner Detected

In summary, our tests proved App Defender’s capability to protect against attack classes
that the WAF was unable to even see.

HP Application Defender outperformed the traditional WAF in our tests by protecting
against vulnerability classes that the WAF missed. We can comfortably extrapolate the
results from the WAF we tested to other WAF products that inspect the parameters
passed in HTTP requests.

Moreover, App Defender proved its worth in detecting actual vulnerabilities we didn’t
know we had in our applications and provided specific insight for remediation—
something a WAF was simply unable to accomplish. App Defender offers superior insight
into the applications it protects, doing so far better than a WAF.

App Defender’s capability to instrument at the API layer allows it to detect attacks the
traditional WAF missed. It reported fewer false positives than the traditional WAF, thanks
to its capability to perform context-sensitive matching.

Although we were unable to configure App Defender as granularly as a true web
application expert might like, most commercial WAF engines also lack such granular
configuration capabilities, so this capability is not truly a market differentiator. Custom
configurations of App Defender may provide more granular configurations than are
available through the standard user interface, alleviating some of our concerns.

Thanks to its plug-and-play approach, App Defender stands above any traditional
WAF, by protecting web applications out of the box with minimal (if any) configuration
needed. This feature could substantially reduce risk by enabling application protection
immediately upon deployment. Finally, App Defender protected against unhandled
exceptions, method call failures and sensitive data: three attack classes the WAF couldn’t
even see. It had fewer false positives for SQL injection thanks to the context-sensitive
protection.

Those looking to adopt a WAF to protect their potentially insecure web applications
should examine RASP solutions, such as App Defender, as effective application
protection alternatives. Organizations that have already deployed a WAF but find that
attackers are bypassing it or experiencing too many false positives should also consider
RASP solutions to augment their protection portfolios.

SANS ANALYST PROGRAM
Protection from the Inside: Application Security Methodologies Compared14

Conclusion

App Defender

detected actual

vulnerabilities we

didn’t know we had

in our applications,

while providing

specific insight for

remediation.

Jacob Williams is founder and principal consultant at Rendition Infosec and a certified SANS instructor
and course author. He has more than a decade of experience in secure network design, penetration
testing, incident response, forensics and malware reverse engineering. Before founding Rendition
Infosec, he worked with various government agencies in information security roles. Jake is a two-time
victor at the annual DC3 Digital Forensics Challenge.

SANS ANALYST PROGRAM
Protection from the Inside: Application Security Methodologies Compared15

About the Author

Sponsor

SANS would like to thank its sponsor:

Last Updated: October 30th, 2015

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

SEC567: Social Engineering Herndon, VAUS Nov 09, 2015 - Nov 10, 2015 Live Event

SANS South Florida 2015 Fort Lauderdale, FLUS Nov 09, 2015 - Nov 14, 2015 Live Event

SANS London 2015 London, GB Nov 14, 2015 - Nov 23, 2015 Live Event

Pen Test Hackfest Summit & Training Alexandria, VAUS Nov 16, 2015 - Nov 23, 2015 Live Event

SANS Hyderabad 2015 Hyderabad, IN Nov 24, 2015 - Dec 04, 2015 Live Event

SANS Cape Town 2015 Cape Town, ZA Nov 30, 2015 - Dec 05, 2015 Live Event

SANS San Francisco 2015 San Francisco, CAUS Nov 30, 2015 - Dec 05, 2015 Live Event

HIMSS Boston, MAUS Dec 01, 2015 - Dec 02, 2015 Live Event

Security Leadership Summit & Training Dallas, TXUS Dec 03, 2015 - Dec 10, 2015 Live Event

SANS Cyber Defense Initiative 2015 Washington, DCUS Dec 12, 2015 - Dec 19, 2015 Live Event

SANS Las Vegas 2016 Las Vegas, NVUS Jan 09, 2016 - Jan 14, 2016 Live Event

SANS Dubai 2016 Dubai, AE Jan 09, 2016 - Jan 14, 2016 Live Event

Cyber Defence Delhi 2016 Delhi, IN Jan 11, 2016 - Jan 22, 2016 Live Event

SANS Brussels Winter 2016 Brussels, BE Jan 18, 2016 - Jan 23, 2016 Live Event

SANS Security East 2016 New Orleans, LAUS Jan 25, 2016 - Jan 30, 2016 Live Event

SANS Sydney 2015 OnlineAU Nov 09, 2015 - Nov 21, 2015 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=43162
http://www.sans.org/social-engineering
http://www.sans.org/link.php?id=38937
http://www.sans.org/south-florida-2015
http://www.sans.org/link.php?id=39552
http://www.sans.org/london-2015
http://www.sans.org/link.php?id=38732
http://www.sans.org/pen-test-hackfest-2015
http://www.sans.org/link.php?id=39282
http://www.sans.org/sans-hyderabad-2015
http://www.sans.org/link.php?id=39557
http://www.sans.org/cape-town-2015
http://www.sans.org/link.php?id=39247
http://www.sans.org/san-francisco-2015
http://www.sans.org/link.php?id=42822
http://www.sans.org/himss-2015
http://www.sans.org/link.php?id=38712
http://www.sans.org/security-leadership-summit-2015
http://www.sans.org/link.php?id=38942
http://www.sans.org/cyber-defense-initiative-2015
http://www.sans.org/link.php?id=40882
http://www.sans.org/las-vegas-2016
http://www.sans.org/link.php?id=40917
http://www.sans.org/dubai-2016
http://www.sans.org/link.php?id=41752
http://www.sans.org/cyber-defence-delhi-2016
http://www.sans.org/link.php?id=40832
http://www.sans.org/belgium-2016
http://www.sans.org/link.php?id=40887
http://www.sans.org/security-east-2016
http://www.sans.org/link.php?id=39572
http://www.sans.org/sydney-2015
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

