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ABSTRACT 
 

Most intelligent systems need a reliable authentication method 
in order to assure the security of sensitive information and 
devices, and vulnerable combinations of username and 
password make it easy for devices and accounts to be 
compromised by attackers. Big corporations  have had their 
databases stolen, leaving millions of accounts compromised.  
Although many systems encourage users to select good 
passwords by enforcing policies, modern cracking techniques 
have proved such strategies to be insufficient. Along with easily 
guessable passwords, password reutilization is a common 
practice among average users, which might lead to a wide range 
of social engineering and privilege escalation techniques. An 
accurate evaluation of a password's resistance to being cracked 
has proved to be a critical challenge. This paper describes 
Passfault, which is an Open Source tool maintained by OWASP 
that poses as a promising method of making sure passwords will 
not be cracked. A solid mathematical foundation is presented, 
and Passfault's results over the famous password list RockYou 
are described. Then, the most popular password rules found in 
the list are used to simulate an attack against a recently leaked 
hash list, providing statistical insight about how corporations 
and users are managing their passwords.   
 
Keywords: Acess Control and Authorization, Authentication, 
Cyber-crime, Information Security Culture, Password Strength, 
Password Complexity, Password Cracking. 
 
 

1.  INTRODUCTION 
 
With topics such as Internet of Things (IoT), Cloud Computing 
and Social Networks playing an increasingly important role in 
the social and economic development of today's society, the 
theme of Information Security has received a lot of attention 
[1]. Any vulnerability that is inherent to a widely used 
technology deserves a lot of attention from both the scientific 
community and the general public. 
 
A reliable authentication technique is crucial to most computer 
systems, being essential to assure the security of sensitive  
information and devices [2]. Although many types of 
authentication methods have been implemented [3]–[6], a 
character based pair of username and password is still the most 
widely used technique in the majority of systems. Vulnerable 
combinations of username and password make it easy for 
devices and accounts to be compromised by malicious players 
[7]–[9]. One example is the Hajime worm, which propagates 
itself in IoT devices by exploiting weak telnet credentials [10]. 
Along with easily guessable passwords, password reutilization 

is a common practice among average users [11], which might 
lead to a wide range of  social engineering and privilege 
escalation techniques, such as the ones used in the Dropbox 
leak [12]. 
 
Cryptographic Hash Functions (CHF) are functions that take a 
password as input and generate a long and complex string of 
characters (hash). Most password authentication systems use 
CHFs to store password hashes in their databases.  CHFs are 
unidirectional functions, which means the only way to obtain a 
specific hash is by providing its original password as input [13]. 
This allows the system to verify authentication attempts without 
keeping a record of what the password actually is. In the 
authentication process, the password typed by the user 
generates a hash that is compared to the hash stored in the 
database, and access is granted in case both values are equal 
[13]. 
 
In the context of Threat Modelling, the malicious subject that is 
trying to get hold of the password can be referred to as the 
attacker, or cracker. The system administrator or specialist that 
seeks to prevent the password from being compromised is 
referred to as the defender [14]. In order to get hold of a 
password, the cracker must find the sequence of characters 
whose CHF matches the hash stolen from the database. This 
process is called password cracking and there are specific tools 
able to make millions of guesses per second, such as John The 
Ripper [15],  Cain and Abel [16] and Hashcat [17]. Hashcat is 
the most advanced and popular tool, making it possible to use 
OpenCL [18] based parallelization techniques on many 
hardware platforms, such as CPUs, GPUs, DSPs and FPGAs. 
Password cracking techniques have been widely researched, not 
only by the scientific community [9], [19], [20],  but also by 
online password cracking communities and forums [21]–[23]. 
In 2016, more than 96% of the SHA1 hashes leaked from 
LinkedIn's databases [24] were cracked in less than five months 
after they were released online [25]. If passwords are simple 
enough, even robust CHFs like bcrypt are not unaffected by 
modern cracking techniques [26]. 
 
When users are creating a password, most of them tend to use a 
predictable pattern that can be easily remembered. That also 
makes the password easily guessable by a cracker. Some 
authors have tried to find patterns in the way users create their 
passwords. Weir et al. [19] used probabilistic context-free 
grammars as input to a cracking software. Bishop and Klein [9] 
searched for common patterns such as number of characters and 
words from dictionaries. Researchers have also tried to 
elaborate a reliable metric that is able to quantify how robust a 
password is against password cracking. Castelluccia et al. used 
Markov models to model password strength [20]. The standards 



defined by NIST [27], [28], propose character entropy as the 
metrics for password guessability. Kelley et al. [30] evaluates 
NIST's metrics as useful, although limited in most cases. Kelley 
et al. also proposes [29] and evaluates [30] as a metric the 
empirical entropy based on previously collected passwords, also 
with limited results. 
 
In order to establish a general framework for quantifying a 
password's resistance against cracking techniques, Sahin, 
Lychev and Wagner [31] formalized the concepts of password 
strength and complexity with concrete mathematical definitions 
that emphasize their differences. These concepts are very 
important in the context of password cracking because they 
draw on the key insight that “an attacker success at cracking a 
password must be defined by its available computational 
resources, time, CHF, as well as the topology that bounds their 
search space” [31]. 
 
Computer systems need a reliable way of making sure their 
users' passwords are not vulnerable to being cracked. This paper 
describes a tool called Passfault [32]–[33], which is an Open 
Source project mantained by OWASP [34] and released under 
the Apache License 2.0 [35]. Passfault poses as an alternative 
metric for password complexity and strength, making use of the 
mathematical foundation provided by Sahin et al. [31] to give 
users and system administrators a better sense of security about 
their passwords. For this, two experiments were performed, 
providing statistical insights about Passfault's results over the 
famous leaked password list RockYou [36] and another recently 
leaked list, which is kept unnamed for ethical reasons. The 
paper is structured as follows: First, the mathematical concepts 
defined by Sahin et al. [31] are revised. Then, Passfault's 
implementation is discussed. The methodologies for the 
experiments are then described. Results are then presented and 
discussed, followed by the Conclusions section. 
 

2.  DEFINITIONS 
 

This section revises the mathematical definitions established by 
Sahin et al. [31]. These definitions establish the mathematical 
foundation behind Passfault's implementation. Some definitions 
were simplified or adapted for this paper. 
 
2.1. Alphabet 

 
An alphabet α is a finite set of characters. 
 
2.2. Password 

 
A password ݌ is a finite string of characters over an alphabet α. 
The profinite set ॿ(α) of all finite strings over α is defined as 
the set of all possible passwords over α. 
 
2.3. Parsing 

 
A parsing of a finite string σ is a partition of its constituent 
characters in α. For example, possible parsings of the string 
psword1 are psword|1, ps|word|1, and p|s|word|1. 
 
2.4. Rule 

 
A rule, denoted by ξ(ߙ,  is a function that takes as input a ,(ݔݑܽ
finite alphabet ߙ together with some auxiliary information aux, 
and outputs a subset of ॿ(α). 

The auxiliary information aux can be viewed as a logical 
formula that specifies the requirements the password must 
follow. For example, auxiliary information might be the 
minimal number of characters or the mandatory use of special 
characters. 
 
One possible example consists of a rule ξ that takes only strings 
that belong to a dictionary of English words, α is the English 
alphabet and aux defines that the string must have at least eight 
characters. The strings homework and explanation are examples 
of strings that belong to the subset of ॿ(α) generated by 
ξ(ߙ,  .(ݔݑܽ

 
2.5. Rule Chain 

 
A rule chain is a rule defined by an ordered set of rules 
{ξଵ, ξଶ, … , ξ୬} such that its output consists of the outputs 
,ଵ݌ ,ଶ݌ … ,  ௡ merged together in the same order to form the݌
string ݌ଵ|݌ଶ| …  ௡. Note that a rule chain also complies with݌|
the definition of a rule. 
 
For example, take rules ξୟ and ξୠ, alphabets ߙ௔ and ߙ௕, and 
auxiliary information ܽݔݑ௔ and ܽݔݑ௕. Rule ξୟ takes names of 
American citizens, ߙ௔ is the English alphabet and ܽݔݑ௔ defines 
that the string must have only lower case characters. Rule ξୠ 
takes number sequences of possible dates (such as ddmmyy or 
mmdd), ߙ௕ is {0-9} and ܽݔݑ௕  doesn't define any requirement. 
One possible output of ξୟ is john, one possible output of ξୠ is 
073190, and one possible output of the rule chain {ξୟ, ξୠ} is 
john073190. 

 
2.6. Complexity 

 
The complexity of a password ݌ is defined over some alphabet 
with respect to a finite set of rules Ξ ,ߙ = {ξଵ, ξଶ, … , ξ୩}. It is 
defined as the size of the smallest subset of ॿ(α) containing p 
that can be generated by some rule ߦ௞ over α, with any auxiliary 
inputs. If no rule in Ξ can generate ݌, then ݌’s complexity is the 
cardinality of ॿ(α). 
 
2.7. Strength 

 
The strength of a password ݌ is defined over some alphabet α, a 
cryptographic hash function ܨ over α, ݌’s hash (݌)ܨ, a time 
period ܶ, and a description of the attacker ܣ, which includes all 
of its computational resources, its rules and auxiliary 
information. The strength is defined in terms of either success 
or failure when (݌)ܨ is subjected to a cracking experiment. The 
experiment consists of ܣ using its rules and auxiliary 
information to generate candidate passwords ܿ௞ and their hashes 
 found some ܿ௞ such that ܣ (and it is over when either: a ,(௞ܿ)ܨ
(௞ܿ)ܨ =  or b) the time after the experiment starts exceeds (݌)ܨ
ܶ. Case a) means success in the experiment, and ݌ is labeled as 
weak. Case b) means ܣ was not able to recover the password, 
and ݌ is then labeled as strong. 
 

3.  PASSFAULT’S IMPLEMENTATION 
 
Passfault is an Open Source tool implemented in Java and 
released under the Apache License 2.0. Its development started 
in 2011 with the intent of making the complexity of passwords 
measurable and easily understood. This section briefly describes 
how Passfault works, relating the aspects of its implementation 
with the concepts presented in last section. 



Passfault receives a password as input, as well as the CHF and 
the attacker's hardware (either the number of GPUs or the 
cracking speed) as optional information. It starts its execution 
by configuring several modules that will be responsible for 
finding rules in the password's structure. These modules do their 
analysis in parallel threads, which allows Passfault's execution 
to be practially instantaneous. In order to find rule chains, the 
modules analyse all possible parsings of the password. When 
the analysis is finished Passfault compares all the returned rule 
chains, trying to find the one with the smallest complexity. In 
case the user has also provided the CHF and attacker's hardware 
information, Passfault estimates how long it would take for the 
password to be cracked. 
 
Table 1 summarizes most rules Passfault is able to find. Besides 
recognizing rules, Passfault also identifies the presence of upper 
and lower case characters, increasing the size of the reported 
search space accordingly. Note that the same rule might have 
different search spaces, such as Random Numbers and Random 
Latin Characters, or Exact Matches for different dictionaries. 
 

TABLE 1 
Rules in Passfault’s Implementation 

 
Rule Description Example 

Dictionary Exact Match 
Substring matches some 
dictionary's entry. 

john 

Dictionary Backwards 
Match 

Substring matches the 
backwards version of some 
dictionary's entry. 

nhoj 

Dictionary Misspelling 
Substring matches a 
misspelled version of some 
dictionary's entry. 

johm 

Dictionary Augmentation 
Substring matches an 
augmented version of some 
dictionary's entry. 

jo.hn 

Dictionary l337 Substitution 
Substring matches a l337 
version of some dictionary's 
entry. 

j0hn 

Date Format 
Substring has numbers in a 
date format. 

073190 

Random Characters 
Substring is a sequence of 
random characters. 

a7mk0s 

Keyboard Patterns 
Substring has a character 
sequence commonly found 
in keyboard layouts. 

zxcvbn 

Repeated Keys 
Substring is a sequence of 
repeated characters. 

aaaa 

String Repetition 
Substring repeats another 
substring previously found 
in the password. 

johnjohn 

 
 
The results are presented to the user in a structured way, listing 
each rule in the rule chain it found and their respective 
complexities, as well as the estimated cracking speed and time 
to crack for the optional CHF and number of GPUs. 
 
Passfault's attacker's hardware option works under the 
assumption that the cracking speed grows linearly with the 
number of devices the attacker chooses to use in the cracking 
process. For example, one NVidia GRID K520 is able to 
calculate 423 million SHA1 hashes per second, while ten 
instances of the same device working together are able to 
calculate 4.23 billion SHA1 hashes per second. 
 
It is important to emphasize that Passfault gives the smallest 
search space as the complexity of a password. That means that 
Passfault is evaluating the worst case scenario, where the 
attacker is going use the smallest rule chain that matches the 
password. 
 

4.  METHODOLOGY 
 
 

4.1. Experiment 1 
 
Experiment 1 was designed to evaluate the rule chains present 
in the famous password list RockYou. RockYou is a gaming 
service that had their databases hacked in 2009, and a list of 
usernames and plaint text passwords was exposed to the web. 
The list has 36,965,286 passwords, including repetitions, and a 
total of 14,344,391 different passwords and their frequencies 
were analysed.  
 
Wordlists from 7 different languages were used to form 
dictionaries for the experiment. The languages were German, 
English, Spanish, French, Italian, Dutch and Portuguese. These 
wordlists are derived from several different sources, which are 
described in Appendix A.  It is known that most languages 
follow the Zipf distribution, meaning the frequency of each 
word is inversely proportional to its rank in the frequency table. 
So for each language, two dictionaries were used: one 
accounting for the distribution's head (most frequent 80% of the 
words); and one accounting for the long tail of the word 
distribution. 
 
Besides the language wordlists, dictionaries commonly used for 
password cracking were also used in the experiment. The list of 
dictionaries is described in Table 2. For simplicity, the language 
wordlists are not mentioned in the table. The US Names and 
Surnames lists also follow the Zipf distribution, and they were 
divided between head and long tail as well. 
 

TABLE 2 
Dictionaries 

 
Dictionary Description Size 

Pet Name List List of pet names 400 

500 worst passwords 

List of 500 worst passwords 
according to the password 
research group 
WhatsMyPass [37]. 

500 

10k worst passwords 

List of 10,000 worst 
passwords according to 
OWASP's Project SecLists 
[38]. 

10,000 

John the Ripper 
Dictionary used by the 
password recovery tool John 
the Ripper. 

3,545 

Cain and Abel 
Dictionary used by the 
password recovery tool Cain 
and Abel. 

306,706 

US Names Popular 

List of the top 80% most 
popular american names, 
according to the US Social 
Security [39]. 

1,127 

US Names Long Tail 
Long tail of the american 
names, according to the US 
Social Security [39]. 

85,782 

US Surnames Popular 

List of the top 80% most 
popular american surames, 
according to the US Census 
of 2000 [40]. 

14,214 

US Surnames Long Tail 
Long tail of the american 
surnames, according to the 
US Census of 2000 [40] 

137,457 

 
 
 
4.2. Experiment 2 
 
Experiment 2 was designed to evaluate the performance of the 
20 most frequent rule chains found in last experiment when 
cracking a famous hash list leaked in 2016, which is kept 
unnamed for ethical reasons. The list contains a total of 
176,751,930 SHA1 hashes, including repeated ones. 
 
The cracking process was executed using Hashcat v3.10 on an 
NVidia GRID K520. 

 



5.  RESULTS 
 

5.1. Experiment 1 
 

The histogram of the rule chain complexities is plotted in Fig. 1. 
The average complexity of RockYou's passwords was 3.34x108, 
a relatively low value that could easily be cracked in a small 
amount of time for most CHFs in use today. The peak in the 
right side of the histogram is due to a high number of passwords 
corresponding to URLs (probably browser bookmarks that users 
decided to use as passwords), which is a rule Passfault was not 
able to identify. 
 

 
Fig. 1. Histogram of rule chain complexities in RockYou 
password list. Average Complexity is indicated by the gray 
dashed line. 
 
 
A total of 848,645 different rule chains were found by Passfault 
in the RockYou list. These rule chains are permutations of 
1,533 different isolated rules. Table 3 shows a list with the 20 
most frequent rule chains found in the list. The Time to Crack 
column corresponds to the case where a SHA1 hash is attacked 
by one NVidia GRID K520 at 423.4 million hashes/s. These 20 
rule chains were found in nearly 10 million passwords, which 
correspond to around 27.13% of the total 36.9 million 
passwords in the list. The total search space covered by these 
rule chains spans only 206.8 million different passwords, which 
means that for obsolete CHFs like SHA1, a good attacker could 
get the credentials of about one fourth of the users in a very 
short period of time. 
 
The frequency rank of the rule chains is shown in Fig. 2. The 
rule chains seem to follow a Zipf distribution. One hypothesis 
to explain this behavior could be related to the fact that many 
passwords follow linguistic patterns, which are known to obey 
Zipf distributions. 
 
If a password's length is small enough, such as 6 characters or 
less, its complexity is bound to relatively low values because 
even character based brute force attacks of this magnitude are 
feasible in short periods of time. The histogram of password 
lengths is plotted in Fig. 3. The average length in RockYou 
password list is 7.86 characters. A total of 9,970,733 passwords 
(26.97% of the entire list) are 6 characters long or less. 
 
As described in Subsection 2.7, a password's strength depends 
on its complexity, the CHF used to generate its hash, a 

predefined time period, and the attacker's resources. If a time 
period of three months is considered, the CHF is SHA1, the 
attacker's hardware is one NVidia GRID K520, and the same 
rule chains that Passfault found in Experiment 1 are being used, 
then only 190,378 passwords (0.51% of the total) could be 
considered strong in the RockYou list.  
 
 

TABLE 3 
20 Most Frequent Rule Chains in RockYou Password List 

 

Rule Chain Frequency Complexity 
Time to 
Crack 

Dictionary Match: John The Ripper 1,423,805 3,545 8.3727 µs 
Date Format 1,098,073 930,000 2.1965 µs 

Dictionary Match: 500 Worst 
Passwords 

998,980 500 1.1809 µs 

Dictionary Match: 10k Worst 
Passwords 

939,639 10,000 23.6180 µs 

Dicionary Match: US Names Popular 736,001 926 2.1871 µs 
6 Random Numbers 510,875 1,000,000 2.3618 ms 

Dicionary Match: Pet Name List 419,748 400 0.9447 µs 
Dicionary Match: German Long Tail 412,485 97,212 0.2296 ms 
Dicionary Match: John The Ripper 

— 
2 Random Numbers 

354,587 354,500 0.8373 ms 

7 Random Numbers 351,678 10,000,000 23.6183 ms 
6 English Keyboard Horizontal 

Characters 
335,550 278 0.6567 µs 

Dicionary Match: 500 Worst 
Passwords 

— 
2 Random Numbers 

319,673 50,000 0.1181 ms 

Dicionary Match: 500 Worst 
Passwords 

— 
1 Random Number 

315,149 35,450 83.7270 µs 

Date Format 
— 

2 Random Numbers 
314,824 93,000,000 219.6504 ms 

Dictionary Match: US Names Popular 
— 

2 Random Numbers 
290,586 92,600 0.2187 ms 

Dictionary Match: 10k Worst 
Passwords 

— 
2 Random Numbers 

286,861 1,000,000 2.3618 ms 

Dictionary Match: Pet Name List 
— 

2 Random Numbers 
244,682 24,700 58.3372 µs 

Dictionary Match: 10k Worst 
Passwords 

— 
1 Random Number 

237,737 100,000 0.2362 ms 

8 Random Numbers 229,563 100,000,000 236.1833 ms 
Dictionary Match: Italian Long Tail 210,625 97,292 0.2298 ms 

Total 10,031,121 206,797,403 488.4208 ms 

 
 
 
 

 
Fig. 2. Frequency rank of rule chains in RockYou password list 
 



 
 

 
Fig. 3. Histogram of password lengths in RockYou password 
list. Average length is indicated by the gray dashed line. 
  
 
5.2. Experiment 2 
 
The 20 most frequent rule chains found in RockYou list were 
used to crack a list of 176.7 million SHA1 hashes, which 
include repetitions. The results are shown in Table 4. The 
hashes cracked by each rule chain also seemed to follow a Zipf 
Distribution, although not in the same order as in Experiment 1. 
A total of 44,896,578 hashes were cracked, accounting for 
around 25.40% of the whole list. 
 
For each rule chain, the average time Hashcat spent was 3.5 
minutes, with little variance. Most of this time was spent by 
Hashcat in setting up internal configurations, such as loading 
target hashes into memory and generating bitmap tables. 

 
6.  CONCLUSIONS 

 
This paper described Passfault, an Open Source tool that 
measures password complexity and strength. A mathematical 
foundation was revised and Passfault's implementation aspects 
were discussed. Passfault's was tested over the famous 
password list RockYou, and the most frequent chain rules were 
used to perform an attack against a recently leaked SHA1 hash 
list. 
 
Each day more corporations' databases are being hacked, 
exposing password hashes from millions of accounts. Entropy 
based password strength metrics are becoming inefficient 
against recent password cracking techniques. New metrics for 
estimating password robustness to such attacks, like the one 
proposed in the present paper, are essential to make sure 
accounts and devices are safe from unauthorized access. 
 
The rule chains Passfault found in RockYou's list follow a Zipf 
distribution, which means small numbers of frequent rule chains 
account for major portions of the list. If these frequent rule 
chains have low complexities, a large number of passwords can 
be easily compromised, even when strong CHFs are used. 
 
 
 
 

 
TABLE 4 

Cracking SHA1 Hashes with Hashcat 
 

Rule Chain Frequency 
Dictionary Match: John the Ripper 9,562,427 

Date Format 1,947,585 
Dictionary Match: 500 Worst Passwords 60,092 
Dictionary Match: 10k Worst Passwords 4,672,643 

Dictionary Match: US Names Popular 61,786 
6 Random Numbers 6,661,096 

Dictionary Match: Pet Name List 8,829 
Dictionary Match: German Long Tail 3,572,018 
Dictionary Match: John The Ripper 

— 
2 Random Numbers 

4,591,111 

7 Random Numbers 1,525,511 
6 English Keyboard Horizontal Characters 2,406 
Dictionary Match: 500 Worst Passwords 

— 
2 Random Numbers 

28,377 

Dictionary Match: 500 Worst Passwords 
— 

1 Random Numbers 
46,812 

Date Format 
— 

2 Random Numbers 
146,016 

Dictionary Match: US Names Popular 
— 

2 Random Numbers 
298,497 

Dictionary Match: 10k Worst Passwords 
— 

2 Random Numbers 
2,017,542 

Dictionary Match: Pet Name List 
— 

2 Random Numbers 
7,627 

Dictionary Match: 10k Worst Passwords 
— 

1 Random Number 
1,041,068 

8 Random Numbers 2,519,963 
Dictionary Match: Italian Long Tail 1,490,744 

Total 44,896,578 

 
 
RockYou's rule chains show that most users tend to create low 
complexity passwords. If the RockYou password list was 
protected by SHA1 hashes, the attacker was using a relatively 
cheap GPU, and the cracking process took three months, then 
only less than 1% of the passwords would remain uncracked. 
This proves that a combination of high complexity passwords 
and good CHFs (like bcrypt) are essential to secure user data. 
Even though the distribution of the number of hashes cracked 
by each rule chain in Experiment 2 did not follow the same 
order as observed in Experiment 1, the percentage of cracked 
hashes was also near to 25% of the whole list. This emphasizes 
the fact that few popular rule chains account for big portions of 
the total passwords. 
 

APPENDIX 
 

The language wordlists used for Experiment 1 were obtained 
with help of the Python module called wordfreq [41], which is 
mantained by Luminoso Technologies, Inc. The module gathers 
information about word usage on different topics at different 
levels of formality, using data collected from the following 
sources: 

 LeedsIC: The Leeds Internet Corpus. 
 SUBTLEX: The SUBTLEX word frequency lists. 
 OpenSub: Data derived from OpenSubtitles. 
 Twitter: Messages sampled from Twitter's public 

stream. 
 Wikipedia: The full text of Wikipedia in 2015. 
 Reddit: The corpus of Reddit comments through May 

2015. 
 CCrawl: Text extracted from the Common Crawl and 

language-detected with cld2. 
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