
Passfault: an Open Source Tool for
Measuring Password Complexity and Strength

B. A. Rodrigues
 EMC, Federal

University of Goiás
Goiânia, GO, 74605-

010, Brazil

J. R. B. Paiva
Federal Institute of

Goiás
Goiânia, GO, 74055-

100, Brazil

V. M. Gomes
EMC, Federal

University of Goiás
Goiânia, GO, 74605-

010, Brazil

C. Morris
OWASP

Saratoga Springs, UT,
84045, USA

W. P. Calixto
EMC, Federal

University of Goiás
Goiânia, GO, 74605-

010, Brazil

ABSTRACT

Most intelligent systems need a reliable authentication method
in order to assure the security of sensitive information and
devices, and vulnerable combinations of username and
password make it easy for devices and accounts to be
compromised by attackers. Big corporations have had their
databases stolen, leaving millions of accounts compromised.
Although many systems encourage users to select good
passwords by enforcing policies, modern cracking techniques
have proved such strategies to be insufficient. Along with easily
guessable passwords, password reutilization is a common
practice among average users, which might lead to a wide range
of social engineering and privilege escalation techniques. An
accurate evaluation of a password's resistance to being cracked
has proved to be a critical challenge. This paper describes
Passfault, which is an Open Source tool maintained by OWASP
that poses as a promising method of making sure passwords will
not be cracked. A solid mathematical foundation is presented,
and Passfault's results over the famous password list RockYou
are described. Then, the most popular password rules found in
the list are used to simulate an attack against a recently leaked
hash list, providing statistical insight about how corporations
and users are managing their passwords.

Keywords: Acess Control and Authorization, Authentication,
Cyber-crime, Information Security Culture, Password Strength,
Password Complexity, Password Cracking.

1. INTRODUCTION

With topics such as Internet of Things (IoT), Cloud Computing
and Social Networks playing an increasingly important role in
the social and economic development of today's society, the
theme of Information Security has received a lot of attention
[1]. Any vulnerability that is inherent to a widely used
technology deserves a lot of attention from both the scientific
community and the general public.

A reliable authentication technique is crucial to most computer
systems, being essential to assure the security of sensitive
information and devices [2]. Although many types of
authentication methods have been implemented [3]–[6], a
character based pair of username and password is still the most
widely used technique in the majority of systems. Vulnerable
combinations of username and password make it easy for
devices and accounts to be compromised by malicious players
[7]–[9]. One example is the Hajime worm, which propagates
itself in IoT devices by exploiting weak telnet credentials [10].
Along with easily guessable passwords, password reutilization

is a common practice among average users [11], which might
lead to a wide range of social engineering and privilege
escalation techniques, such as the ones used in the Dropbox
leak [12].

Cryptographic Hash Functions (CHF) are functions that take a
password as input and generate a long and complex string of
characters (hash). Most password authentication systems use
CHFs to store password hashes in their databases. CHFs are
unidirectional functions, which means the only way to obtain a
specific hash is by providing its original password as input [13].
This allows the system to verify authentication attempts without
keeping a record of what the password actually is. In the
authentication process, the password typed by the user
generates a hash that is compared to the hash stored in the
database, and access is granted in case both values are equal
[13].

In the context of Threat Modelling, the malicious subject that is
trying to get hold of the password can be referred to as the
attacker, or cracker. The system administrator or specialist that
seeks to prevent the password from being compromised is
referred to as the defender [14]. In order to get hold of a
password, the cracker must find the sequence of characters
whose CHF matches the hash stolen from the database. This
process is called password cracking and there are specific tools
able to make millions of guesses per second, such as John The
Ripper [15], Cain and Abel [16] and Hashcat [17]. Hashcat is
the most advanced and popular tool, making it possible to use
OpenCL [18] based parallelization techniques on many
hardware platforms, such as CPUs, GPUs, DSPs and FPGAs.
Password cracking techniques have been widely researched, not
only by the scientific community [9], [19], [20], but also by
online password cracking communities and forums [21]–[23].
In 2016, more than 96% of the SHA1 hashes leaked from
LinkedIn's databases [24] were cracked in less than five months
after they were released online [25]. If passwords are simple
enough, even robust CHFs like bcrypt are not unaffected by
modern cracking techniques [26].

When users are creating a password, most of them tend to use a
predictable pattern that can be easily remembered. That also
makes the password easily guessable by a cracker. Some
authors have tried to find patterns in the way users create their
passwords. Weir et al. [19] used probabilistic context-free
grammars as input to a cracking software. Bishop and Klein [9]
searched for common patterns such as number of characters and
words from dictionaries. Researchers have also tried to
elaborate a reliable metric that is able to quantify how robust a
password is against password cracking. Castelluccia et al. used
Markov models to model password strength [20]. The standards

defined by NIST [27], [28], propose character entropy as the
metrics for password guessability. Kelley et al. [30] evaluates
NIST's metrics as useful, although limited in most cases. Kelley
et al. also proposes [29] and evaluates [30] as a metric the
empirical entropy based on previously collected passwords, also
with limited results.

In order to establish a general framework for quantifying a
password's resistance against cracking techniques, Sahin,
Lychev and Wagner [31] formalized the concepts of password
strength and complexity with concrete mathematical definitions
that emphasize their differences. These concepts are very
important in the context of password cracking because they
draw on the key insight that “an attacker success at cracking a
password must be defined by its available computational
resources, time, CHF, as well as the topology that bounds their
search space” [31].

Computer systems need a reliable way of making sure their
users' passwords are not vulnerable to being cracked. This paper
describes a tool called Passfault [32]–[33], which is an Open
Source project mantained by OWASP [34] and released under
the Apache License 2.0 [35]. Passfault poses as an alternative
metric for password complexity and strength, making use of the
mathematical foundation provided by Sahin et al. [31] to give
users and system administrators a better sense of security about
their passwords. For this, two experiments were performed,
providing statistical insights about Passfault's results over the
famous leaked password list RockYou [36] and another recently
leaked list, which is kept unnamed for ethical reasons. The
paper is structured as follows: First, the mathematical concepts
defined by Sahin et al. [31] are revised. Then, Passfault's
implementation is discussed. The methodologies for the
experiments are then described. Results are then presented and
discussed, followed by the Conclusions section.

2. DEFINITIONS

This section revises the mathematical definitions established by
Sahin et al. [31]. These definitions establish the mathematical
foundation behind Passfault's implementation. Some definitions
were simplified or adapted for this paper.

2.1. Alphabet

An alphabet α is a finite set of characters.

2.2. Password

A password ݌ is a finite string of characters over an alphabet α.
The profinite set ॿ(α) of all finite strings over α is defined as
the set of all possible passwords over α.

2.3. Parsing

A parsing of a finite string σ is a partition of its constituent
characters in α. For example, possible parsings of the string
psword1 are psword|1, ps|word|1, and p|s|word|1.

2.4. Rule

A rule, denoted by ξ(ߙ, is a function that takes as input a ,(ݔݑܽ
finite alphabet ߙ together with some auxiliary information aux,
and outputs a subset of ॿ(α).

The auxiliary information aux can be viewed as a logical
formula that specifies the requirements the password must
follow. For example, auxiliary information might be the
minimal number of characters or the mandatory use of special
characters.

One possible example consists of a rule ξ that takes only strings
that belong to a dictionary of English words, α is the English
alphabet and aux defines that the string must have at least eight
characters. The strings homework and explanation are examples
of strings that belong to the subset of ॿ(α) generated by
ξ(ߙ, .(ݔݑܽ

2.5. Rule Chain

A rule chain is a rule defined by an ordered set of rules
{ξଵ, ξଶ, … , ξ୬} such that its output consists of the outputs
,ଵ݌ ,ଶ݌ … , ௡ merged together in the same order to form the݌
string ݌ଵ|݌ଶ| … ௡. Note that a rule chain also complies with݌|
the definition of a rule.

For example, take rules ξୟ and ξୠ, alphabets ߙ௔ and ߙ௕, and
auxiliary information ܽݔݑ௔ and ܽݔݑ௕. Rule ξୟ takes names of
American citizens, ߙ௔ is the English alphabet and ܽݔݑ௔ defines
that the string must have only lower case characters. Rule ξୠ
takes number sequences of possible dates (such as ddmmyy or
mmdd), ߙ௕ is {0-9} and ܽݔݑ௕ doesn't define any requirement.
One possible output of ξୟ is john, one possible output of ξୠ is
073190, and one possible output of the rule chain {ξୟ, ξୠ} is
john073190.

2.6. Complexity

The complexity of a password ݌ is defined over some alphabet
with respect to a finite set of rules Ξ ,ߙ = {ξଵ, ξଶ, … , ξ୩}. It is
defined as the size of the smallest subset of ॿ(α) containing p
that can be generated by some rule ߦ௞ over α, with any auxiliary
inputs. If no rule in Ξ can generate ݌, then ݌’s complexity is the
cardinality of ॿ(α).

2.7. Strength

The strength of a password ݌ is defined over some alphabet α, a
cryptographic hash function ܨ over α, ݌’s hash (݌)ܨ, a time
period ܶ, and a description of the attacker ܣ, which includes all
of its computational resources, its rules and auxiliary
information. The strength is defined in terms of either success
or failure when (݌)ܨ is subjected to a cracking experiment. The
experiment consists of ܣ using its rules and auxiliary
information to generate candidate passwords ܿ௞ and their hashes
 found some ܿ௞ such that ܣ (and it is over when either: a ,(௞ܿ)ܨ
(௞ܿ)ܨ = or b) the time after the experiment starts exceeds (݌)ܨ
ܶ. Case a) means success in the experiment, and ݌ is labeled as
weak. Case b) means ܣ was not able to recover the password,
and ݌ is then labeled as strong.

3. PASSFAULT’S IMPLEMENTATION

Passfault is an Open Source tool implemented in Java and
released under the Apache License 2.0. Its development started
in 2011 with the intent of making the complexity of passwords
measurable and easily understood. This section briefly describes
how Passfault works, relating the aspects of its implementation
with the concepts presented in last section.

Passfault receives a password as input, as well as the CHF and
the attacker's hardware (either the number of GPUs or the
cracking speed) as optional information. It starts its execution
by configuring several modules that will be responsible for
finding rules in the password's structure. These modules do their
analysis in parallel threads, which allows Passfault's execution
to be practially instantaneous. In order to find rule chains, the
modules analyse all possible parsings of the password. When
the analysis is finished Passfault compares all the returned rule
chains, trying to find the one with the smallest complexity. In
case the user has also provided the CHF and attacker's hardware
information, Passfault estimates how long it would take for the
password to be cracked.

Table 1 summarizes most rules Passfault is able to find. Besides
recognizing rules, Passfault also identifies the presence of upper
and lower case characters, increasing the size of the reported
search space accordingly. Note that the same rule might have
different search spaces, such as Random Numbers and Random
Latin Characters, or Exact Matches for different dictionaries.

TABLE 1
Rules in Passfault’s Implementation

Rule Description Example

Dictionary Exact Match
Substring matches some
dictionary's entry.

john

Dictionary Backwards
Match

Substring matches the
backwards version of some
dictionary's entry.

nhoj

Dictionary Misspelling
Substring matches a
misspelled version of some
dictionary's entry.

johm

Dictionary Augmentation
Substring matches an
augmented version of some
dictionary's entry.

jo.hn

Dictionary l337 Substitution
Substring matches a l337
version of some dictionary's
entry.

j0hn

Date Format
Substring has numbers in a
date format.

073190

Random Characters
Substring is a sequence of
random characters.

a7mk0s

Keyboard Patterns
Substring has a character
sequence commonly found
in keyboard layouts.

zxcvbn

Repeated Keys
Substring is a sequence of
repeated characters.

aaaa

String Repetition
Substring repeats another
substring previously found
in the password.

johnjohn

The results are presented to the user in a structured way, listing
each rule in the rule chain it found and their respective
complexities, as well as the estimated cracking speed and time
to crack for the optional CHF and number of GPUs.

Passfault's attacker's hardware option works under the
assumption that the cracking speed grows linearly with the
number of devices the attacker chooses to use in the cracking
process. For example, one NVidia GRID K520 is able to
calculate 423 million SHA1 hashes per second, while ten
instances of the same device working together are able to
calculate 4.23 billion SHA1 hashes per second.

It is important to emphasize that Passfault gives the smallest
search space as the complexity of a password. That means that
Passfault is evaluating the worst case scenario, where the
attacker is going use the smallest rule chain that matches the
password.

4. METHODOLOGY

4.1. Experiment 1

Experiment 1 was designed to evaluate the rule chains present
in the famous password list RockYou. RockYou is a gaming
service that had their databases hacked in 2009, and a list of
usernames and plaint text passwords was exposed to the web.
The list has 36,965,286 passwords, including repetitions, and a
total of 14,344,391 different passwords and their frequencies
were analysed.

Wordlists from 7 different languages were used to form
dictionaries for the experiment. The languages were German,
English, Spanish, French, Italian, Dutch and Portuguese. These
wordlists are derived from several different sources, which are
described in Appendix A. It is known that most languages
follow the Zipf distribution, meaning the frequency of each
word is inversely proportional to its rank in the frequency table.
So for each language, two dictionaries were used: one
accounting for the distribution's head (most frequent 80% of the
words); and one accounting for the long tail of the word
distribution.

Besides the language wordlists, dictionaries commonly used for
password cracking were also used in the experiment. The list of
dictionaries is described in Table 2. For simplicity, the language
wordlists are not mentioned in the table. The US Names and
Surnames lists also follow the Zipf distribution, and they were
divided between head and long tail as well.

TABLE 2
Dictionaries

Dictionary Description Size

Pet Name List List of pet names 400

500 worst passwords

List of 500 worst passwords
according to the password
research group
WhatsMyPass [37].

500

10k worst passwords

List of 10,000 worst
passwords according to
OWASP's Project SecLists
[38].

10,000

John the Ripper
Dictionary used by the
password recovery tool John
the Ripper.

3,545

Cain and Abel
Dictionary used by the
password recovery tool Cain
and Abel.

306,706

US Names Popular

List of the top 80% most
popular american names,
according to the US Social
Security [39].

1,127

US Names Long Tail
Long tail of the american
names, according to the US
Social Security [39].

85,782

US Surnames Popular

List of the top 80% most
popular american surames,
according to the US Census
of 2000 [40].

14,214

US Surnames Long Tail
Long tail of the american
surnames, according to the
US Census of 2000 [40]

137,457

4.2. Experiment 2

Experiment 2 was designed to evaluate the performance of the
20 most frequent rule chains found in last experiment when
cracking a famous hash list leaked in 2016, which is kept
unnamed for ethical reasons. The list contains a total of
176,751,930 SHA1 hashes, including repeated ones.

The cracking process was executed using Hashcat v3.10 on an
NVidia GRID K520.

5. RESULTS

5.1. Experiment 1

The histogram of the rule chain complexities is plotted in Fig. 1.
The average complexity of RockYou's passwords was 3.34x108,
a relatively low value that could easily be cracked in a small
amount of time for most CHFs in use today. The peak in the
right side of the histogram is due to a high number of passwords
corresponding to URLs (probably browser bookmarks that users
decided to use as passwords), which is a rule Passfault was not
able to identify.

Fig. 1. Histogram of rule chain complexities in RockYou
password list. Average Complexity is indicated by the gray
dashed line.

A total of 848,645 different rule chains were found by Passfault
in the RockYou list. These rule chains are permutations of
1,533 different isolated rules. Table 3 shows a list with the 20
most frequent rule chains found in the list. The Time to Crack
column corresponds to the case where a SHA1 hash is attacked
by one NVidia GRID K520 at 423.4 million hashes/s. These 20
rule chains were found in nearly 10 million passwords, which
correspond to around 27.13% of the total 36.9 million
passwords in the list. The total search space covered by these
rule chains spans only 206.8 million different passwords, which
means that for obsolete CHFs like SHA1, a good attacker could
get the credentials of about one fourth of the users in a very
short period of time.

The frequency rank of the rule chains is shown in Fig. 2. The
rule chains seem to follow a Zipf distribution. One hypothesis
to explain this behavior could be related to the fact that many
passwords follow linguistic patterns, which are known to obey
Zipf distributions.

If a password's length is small enough, such as 6 characters or
less, its complexity is bound to relatively low values because
even character based brute force attacks of this magnitude are
feasible in short periods of time. The histogram of password
lengths is plotted in Fig. 3. The average length in RockYou
password list is 7.86 characters. A total of 9,970,733 passwords
(26.97% of the entire list) are 6 characters long or less.

As described in Subsection 2.7, a password's strength depends
on its complexity, the CHF used to generate its hash, a

predefined time period, and the attacker's resources. If a time
period of three months is considered, the CHF is SHA1, the
attacker's hardware is one NVidia GRID K520, and the same
rule chains that Passfault found in Experiment 1 are being used,
then only 190,378 passwords (0.51% of the total) could be
considered strong in the RockYou list.

TABLE 3
20 Most Frequent Rule Chains in RockYou Password List

Rule Chain Frequency Complexity
Time to
Crack

Dictionary Match: John The Ripper 1,423,805 3,545 8.3727 µs
Date Format 1,098,073 930,000 2.1965 µs

Dictionary Match: 500 Worst
Passwords

998,980 500 1.1809 µs

Dictionary Match: 10k Worst
Passwords

939,639 10,000 23.6180 µs

Dicionary Match: US Names Popular 736,001 926 2.1871 µs
6 Random Numbers 510,875 1,000,000 2.3618 ms

Dicionary Match: Pet Name List 419,748 400 0.9447 µs
Dicionary Match: German Long Tail 412,485 97,212 0.2296 ms
Dicionary Match: John The Ripper

—
2 Random Numbers

354,587 354,500 0.8373 ms

7 Random Numbers 351,678 10,000,000 23.6183 ms
6 English Keyboard Horizontal

Characters
335,550 278 0.6567 µs

Dicionary Match: 500 Worst
Passwords

—
2 Random Numbers

319,673 50,000 0.1181 ms

Dicionary Match: 500 Worst
Passwords

—
1 Random Number

315,149 35,450 83.7270 µs

Date Format
—

2 Random Numbers
314,824 93,000,000 219.6504 ms

Dictionary Match: US Names Popular
—

2 Random Numbers
290,586 92,600 0.2187 ms

Dictionary Match: 10k Worst
Passwords

—
2 Random Numbers

286,861 1,000,000 2.3618 ms

Dictionary Match: Pet Name List
—

2 Random Numbers
244,682 24,700 58.3372 µs

Dictionary Match: 10k Worst
Passwords

—
1 Random Number

237,737 100,000 0.2362 ms

8 Random Numbers 229,563 100,000,000 236.1833 ms
Dictionary Match: Italian Long Tail 210,625 97,292 0.2298 ms

Total 10,031,121 206,797,403 488.4208 ms

Fig. 2. Frequency rank of rule chains in RockYou password list

Fig. 3. Histogram of password lengths in RockYou password
list. Average length is indicated by the gray dashed line.

5.2. Experiment 2

The 20 most frequent rule chains found in RockYou list were
used to crack a list of 176.7 million SHA1 hashes, which
include repetitions. The results are shown in Table 4. The
hashes cracked by each rule chain also seemed to follow a Zipf
Distribution, although not in the same order as in Experiment 1.
A total of 44,896,578 hashes were cracked, accounting for
around 25.40% of the whole list.

For each rule chain, the average time Hashcat spent was 3.5
minutes, with little variance. Most of this time was spent by
Hashcat in setting up internal configurations, such as loading
target hashes into memory and generating bitmap tables.

6. CONCLUSIONS

This paper described Passfault, an Open Source tool that
measures password complexity and strength. A mathematical
foundation was revised and Passfault's implementation aspects
were discussed. Passfault's was tested over the famous
password list RockYou, and the most frequent chain rules were
used to perform an attack against a recently leaked SHA1 hash
list.

Each day more corporations' databases are being hacked,
exposing password hashes from millions of accounts. Entropy
based password strength metrics are becoming inefficient
against recent password cracking techniques. New metrics for
estimating password robustness to such attacks, like the one
proposed in the present paper, are essential to make sure
accounts and devices are safe from unauthorized access.

The rule chains Passfault found in RockYou's list follow a Zipf
distribution, which means small numbers of frequent rule chains
account for major portions of the list. If these frequent rule
chains have low complexities, a large number of passwords can
be easily compromised, even when strong CHFs are used.

TABLE 4

Cracking SHA1 Hashes with Hashcat

Rule Chain Frequency
Dictionary Match: John the Ripper 9,562,427

Date Format 1,947,585
Dictionary Match: 500 Worst Passwords 60,092
Dictionary Match: 10k Worst Passwords 4,672,643

Dictionary Match: US Names Popular 61,786
6 Random Numbers 6,661,096

Dictionary Match: Pet Name List 8,829
Dictionary Match: German Long Tail 3,572,018
Dictionary Match: John The Ripper

—
2 Random Numbers

4,591,111

7 Random Numbers 1,525,511
6 English Keyboard Horizontal Characters 2,406
Dictionary Match: 500 Worst Passwords

—
2 Random Numbers

28,377

Dictionary Match: 500 Worst Passwords
—

1 Random Numbers
46,812

Date Format
—

2 Random Numbers
146,016

Dictionary Match: US Names Popular
—

2 Random Numbers
298,497

Dictionary Match: 10k Worst Passwords
—

2 Random Numbers
2,017,542

Dictionary Match: Pet Name List
—

2 Random Numbers
7,627

Dictionary Match: 10k Worst Passwords
—

1 Random Number
1,041,068

8 Random Numbers 2,519,963
Dictionary Match: Italian Long Tail 1,490,744

Total 44,896,578

RockYou's rule chains show that most users tend to create low
complexity passwords. If the RockYou password list was
protected by SHA1 hashes, the attacker was using a relatively
cheap GPU, and the cracking process took three months, then
only less than 1% of the passwords would remain uncracked.
This proves that a combination of high complexity passwords
and good CHFs (like bcrypt) are essential to secure user data.
Even though the distribution of the number of hashes cracked
by each rule chain in Experiment 2 did not follow the same
order as observed in Experiment 1, the percentage of cracked
hashes was also near to 25% of the whole list. This emphasizes
the fact that few popular rule chains account for big portions of
the total passwords.

APPENDIX

The language wordlists used for Experiment 1 were obtained
with help of the Python module called wordfreq [41], which is
mantained by Luminoso Technologies, Inc. The module gathers
information about word usage on different topics at different
levels of formality, using data collected from the following
sources:

 LeedsIC: The Leeds Internet Corpus.
 SUBTLEX: The SUBTLEX word frequency lists.
 OpenSub: Data derived from OpenSubtitles.
 Twitter: Messages sampled from Twitter's public

stream.
 Wikipedia: The full text of Wikipedia in 2015.
 Reddit: The corpus of Reddit comments through May

2015.
 CCrawl: Text extracted from the Common Crawl and

language-detected with cld2.

ACKNOWLEDGMENTS

The authors would like to thank Raymond Stone from
Microsoft Corporation for his valuable help during this
research.

Also, special thanks to CAPES for providing financial aid to
this project.

REFERENCES

[1] J. Hutchens. Kali Linux network scanning cookbook,

Birmingham, UK: Packt Pub., 2014.
[2] Cisar and S.Cisar. Password - a Form of Authentication,
5th International Symposium on Intelligent Systems and
Informatics, 2007.
[3] R. Wildes. Iris recognition: an emerging biometric
technology, Proceedings of the IEEE, v. 85, n. 9, p. 1348-1363,
1997.
[4] S. Singh and M. Yamini. Voice based login authentication
for Linux, 2013 International Conference on Recent Trends in
Information Technology (ICRTIT), 2013.
[5] R. Jayamaha et al. VoizLock, Human Voice
Authentication System using Hidden Markov Model, 2008
4th International Conference on Information and Automation
for Sustainability, 2008.
[6] F. Koushanfar Y. Zhang. Robust privacy-preserving
fingerprint authentication, 2016 IEEE International
Symposium on Hardware Oriented Security and Trust
(HOST), 2016.
[7] D. Florêncio and C. Herley. A large-scale study of web
password habits, Proc. WWW'07, 2007.
[8] M. Dell'Amico, P. Michiardi, and Y. Roudier. Password
strength: An empirical analysis, Proc. INFOCOM 2010,
2010.
[9] M. Bishop and D. V. Klein. Improving system security
via proactive password checking, Computers and Security,
vol. 14, no. 3, pp. 233-249, 1995.
[10] S. Edwards and I. Profetis. Hajime: Analysis of a
decentralized internet worm for IoT devices, Rapidity
Networks Security Research Group, 2016.
[11] S. Gaw and E. W. Felten. Password management
strategies for online accounts, Proc. SOUPS, 2006.
[12][Online: 11/20/16] M. Lynley. Dropbox employee’s
password reuse led to theft of 60M+ user credentials,
TechCrunch, 2016.
https://techcrunch.com/2016/08/30/dropbox-employees-
password-reuse-led-to-theft-of-60m-user-credentials
[13] P. C. van Oorschot, A. J. Menezes and S. A. Vanstone.
The Handbook of Applied Cryptography, CRC Press, 5th
edition, 2001.
[14] A. Shostack. Threat modeling: designing for security,
Wiley; 1 edition, 2014.
[15][Online: 11/20/16] http://www.openwall.com/john/
[16][Online: 11/20/16] http://www.oxid.it/cain.html
.
[17] J. Steube. Hashcat Advanced Password Recovery, 2013.
[18] A. Munshi. The OpenCL specification, 2009 IEEE Hot
Chips 21 Symposium (HCS), 2009.
[19] M. Weir, A. Sudhir, M. Breno, and G. Bill. Password
cracking using probabilistic context-free grammars, Security
and Privacy, 30th IEEE Symposium, 2009.

[20] C. Castelluccia, M. Durmuth, and D. Perito. Adaptive
Password-Strength meters from markov models, Proc.
NDSS 2012, 2012.
[21][Online: 11/20/16] https://hashcat.net/forum/
[22][Online: 11/20/16] http://crackingforum.com/
[23][Online: 11/20/16] https://www.webcracking.com/.
[24][Online: 11/20/16] J. M. Gosney. How LinkedIn’s
password sloppiness hurts us all, Ars Technica, 2016.
http://arstechnica.com/security/2016/06/how-linkedins-
password-sloppiness-hurts-us-all/
[25][Online: 11/20/16] https://hashes.org/public.php.
[26][Online: 11/20/16] T. Fox-Brewster. Why You Shouldn't
Panic About Dropbox Leaking 68 Million Passwords,
Forbes, 2016.
http://www.forbes.com/sites/thomasbrewster/2016/08/31/dropb
ox-hacked-but-its-not-that-bad
[27] W. E. Burr et al. Electronic authentication guideline,
Technical report, nov 2013.
[28] W. E. Burr et al. Electronic authentication guideline,
NIST Special Publication, 2004.
[29] P. Kelley et al. Encountering stronger password
requirements: user attitudes and behaviors, Proc. SOUPS
'10, 2010.
[30] P. Kelley et al. Guess Again (and Again and Again):
Measuring Password Strength by Simulating Password-
Cracking Algorithms, 2012 IEEE Symposium on Security and
Privacy, 2012.
[31] C. S. Sahin, R. Lychev and N. Wagner. General
Framework for Evaluating Password Complexity and
Strength, arXiv:1512.05814v1 [cs.CR], 2015
[32][Online: 11/20/16] http://www.passfault.com/
[33][Online: 11/20/16] https://github.com/OWASP/passfault
[34][Online: 11/20/16] https://www.owasp.org/
[35] L. Rosen. Open source licensing, Vol. 692. Prentice Hall,
2005.
[36] M. Weir et al. Testing metrics for password creation
policies by attacking large sets of revealed passwords,
Proceedings of the 17th ACM conference on Computer and
communications security - CCS '10, 2010.
[37][Online: 11/20/16] http://www.whatsmypass.com/
[38][Online: 11/20/16]
https://www.owasp.org/index.php/Projects/OWASP_SecLists_
Project
[39][Online: 11/20/16]
https://www.ssa.gov/oact/babynames/limits.html
[40][Online: 11/20/16]
http://www.census.gov/topics/population/genealogy/data/2000_
surnames.html
[41][Online: 11/20/16]
https://github.com/LuminosoInsight/wordfreq

