
Recipes for enabling
HTTPS

The DevOps Approach
to Setting up Robust HTTPS Web Apps

thomas.herlea@trasysgroup.com
nelis.boucke@archiwise.com

yo@johanpeeters.com

Overview

• Motivation
• DevOps
• Demonstrations

o Puppet basics
o Configuration of cipher list
o Configuration of webserver
o Vagrant as tool for testing

• Experiences

Motivation

HTTPS is
• hard to set up
• hard to maintain

1. Evolving advice on getting HTTPS right

Motivation

SSL stripping 2009 MiTM during HTTP prevents switching to HTTPS.

Insecure
renegotiation

2009 MiTM can perform operations on server on client’s behalf.

BEAST 2011 Forced padding verification errors in CBC mode leak plaintext.

CRIME 2013 Forced variable length after TLS compression leaks plaintext.

Lucky 13 2013 Forced variable duration of MAC verification leaks information.

RC4 2013 Session cookie forced into many TLS sessions is leaked by RC4 bias.

Forward
secrecy

2013 Mass surveillance + data retention + obtaining server key
= attacker decrypts old traffic

BREACH 2013 Like CRIME, but HTTP compression.

1. Evolving advice on getting HTTPS right

2. Poor deployment of known mitigations
Still vulnerable to CRIME > 19%

Still supporting insecure SSL 2.0 (after 2 years) > 27%

Still supporting weak and insecure cipher suites > 33%

Still vulnerable to BEAST (after 2 years) > 65%

Still no support for TLS 1.2 (after 5 years) > 80%

Motivation

Source: SSL Pulse, report of August 2, 2013

Motivation

HTTPS is
• hard to set up
• hard to maintain

Systematic approach needed
• Repeatable
• Knowledge capturing and sharing
• Agility to react on changing advice
• Assurance / Verification

Overview

• Motivation
• DevOps
• Demonstrations

o Puppet basics
o Configuration of cipher list
o Configuration of webserver
o Vagrant as tool for testing

• Experiences

DevOps

DevOps = Dev and IT Operations convergence
• Repeatable

o Infrastructure as code, automate procedures
o Recipes in languages like CFEngine, Puppet, Chef

• Knowledge capturing and sharing
o Code = always up-to-date documentation
o Build on existing modules
o Abstraction

DevOps

• Agility to react on changing advice
o Shorter release cycles through automation

• Assurance / Verification
o Source control for traceability
o Easy to replicate (production) environment

for testing and verification

Puppet

Manifest

Package ServiceFile

I want Nginx 1.4.2 with
with ssl enabled and
specific cipher selection

Resource
Abstractions

Desired state
(declarative)

Overview

• Motivation
• DevOps
• Demonstrations

o Puppet basics
o Configuration of cipher list
o Configuration of webserver
o Vagrant as tool for testing

• Experiences
Our github repo:

https://github.com/JohanPeeters/secure-webserver.git

https://github.com/JohanPeeters/secure-webserver.git

Overview

• Motivation
• DevOps
• Demonstrations

o Puppet basics
o Configuration of cipher list
o Configuration of webserver
o Vagrant as tool for testing

• Experiences
Our github repo:

https://github.com/JohanPeeters/secure-webserver.git

https://github.com/JohanPeeters/secure-webserver.git

Version hell

Ideally: use LTS => Ubuntu Server 12.04.2
Problems:
• nginx < 1.4.2 does not support TLS 1.2
• openssl < 1.0.1e does not support GCM
• ruby < 2.0.0-p247 suffers from

hostname check bypassing
Solution?

compile from source?
but then we’ve blown the LTS-ness...

Overview

• Motivation
• DevOps
• Demonstrations

o Puppet basics
o Configuration of cipher list
o Configuration of webserver
o Vagrant as tool for testing

• Experiences
Our github repo:

https://github.com/JohanPeeters/secure-webserver.git

https://github.com/JohanPeeters/secure-webserver.git

Mitigations
SSL stripping HSTS correct configuration

Insecure
renegotiation

Use OpenSSL version that supports RFC
5746 (> v0.9.8k).

software version and
correct configuration

BEAST No CBC mode prior to TLS 1.1. cipher list

CRIME No TLS compression. software version

Lucky 13 No CBC mode. cipher list

RC4 No RC4. cipher list

Forward
secrecy

No RSA, PSK or SRP key exchange. cipher list

BREACH No HTTP compression. correct configuration

Sources for mitigations: SSL labs, OWASP TLS cheat sheets, ...

TDD

• write failing test
• write code to fix the test
• refactor
• repeat

Where do ciphers
 come from?

IANA TLS Cipher Registry

openssl ciphers -V

CipherSpec
name
protocol_version
kXchange_alg
mode
….

accepted

rejected

Overview

• Motivation
• DevOps
• Demonstrations

o Puppet basics
o Configuration of cipher list
o Configuration of webserver
o Vagrant as tool for testing

• Experiences
Our github repo:

https://github.com/JohanPeeters/secure-webserver.git

https://github.com/JohanPeeters/secure-webserver.git

Overview

• Motivation
• DevOps
• Demonstrations

o Puppet basics
o Configuration of cipher list
o Configuration of webserver
o Vagrant as tool for testing

• Experiences
Our github repo:

https://github.com/JohanPeeters/secure-webserver.git

https://github.com/JohanPeeters/secure-webserver.git

Overview

• Motivation
• DevOps
• Demonstrations

o Puppet basics
o Configuration of cipher list
o Configuration of webserver
o Vagrant as tool for testing

• Experiences

Experiences

Is configuring HTTPS hard?
• Cipher lists are fragile

o easy to make errors in cipher list
o some errors might stay undetected without testing

• Custom webserver installation was required
o tradeoff with LTS and stability?

⇒ What are your chances with one-off manual
installation or configuration?

Experiences

Did DevOps help?
• Systematic approach
• Allows for extensive testing and

experimentation

Experiences

Proof of concept with limitations:
• Only indirect property testing
• Added risk of using Puppet?
• Only hardening for HTTPS

o Attacks on other software
o User management
o Integrity check of installed software?

Take away

systematic HTTPS → DevOps

Code and test!

References

Our github repo:
https://github.com/JohanPeeters/secure-webserver.git

SSL Labs:
https://www.ssllabs.com/

sslyze
https://github.com/iSECPartners/sslyze.git

OWASP Transport Layer Protection Cheat
Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

https://github.com/JohanPeeters/secure-webserver.git
https://www.ssllabs.com/
https://github.com/iSECPartners/sslyze.git
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

Conclusions 2

no chance with one-off manual installation
• repeatability
• TDD
• ability to update installation fast

=> DevOps

Environment

• Production
o Ubuntu server 12.04.2 LTS
o Nginx 1.4.2 (TLS 1.2 support)
o Openssl 1.0.1e (GCM on Ubuntu)

• DevOps
o Puppet v3.2.1
o Ruby 2.0.0p247 (hostname check bypassing)

• Test
o Rspec 2.14.5
o Vagrant 1.2.2

About Us

thomas.herlea@trasysgroup.com
InfoSec consultant, Crypto

nelis.boucke@archiwise.com
Software architect, interested in DevOps

yo@johanpeeters.com
Software architect, agile dev

mailto:thomas.herlea@trasysgroup.com
mailto:nelis.boucke@archiwise.com
mailto:yo@johanpeeters.com

Advice

Advice : use recipes to use secure software versions

Problem: security advice (HTTPS) often requires recent
software not available in software repositories

• Nginx ~ openssl

• openssl

• Ruby (commonname attack)

	Folie 1
	Overview
	Motivation
	Motivation
	Motivation
	Motivation
	Overview
	DevOps
	DevOps
	Puppet
	Overview
	Overview
	Version hell
	Overview
	Mitigations
	TDD
	Where do ciphers
 come from?
	Overview
	Overview
	Overview
	Experiences
	Experiences
	Experiences
	Take away
	References
	Folie 26
	Conclusions 2
	Environment
	About Us
	Advice

