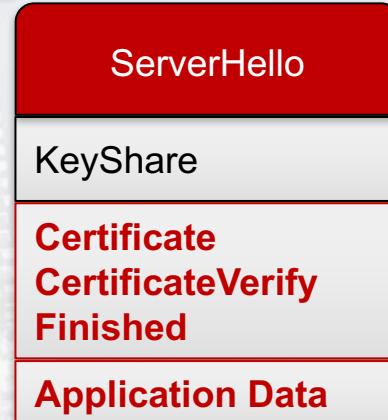
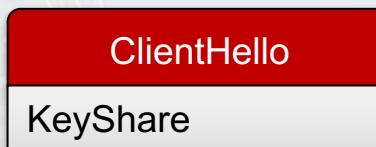


Securely Deploying TLS 1.3

September 2017

Agenda

- Why TLS 1.3?
- Zero Round Trip Time (0-RTT) requests
- Forward secrecy
- Resumption key management



Why TLS 1.3?

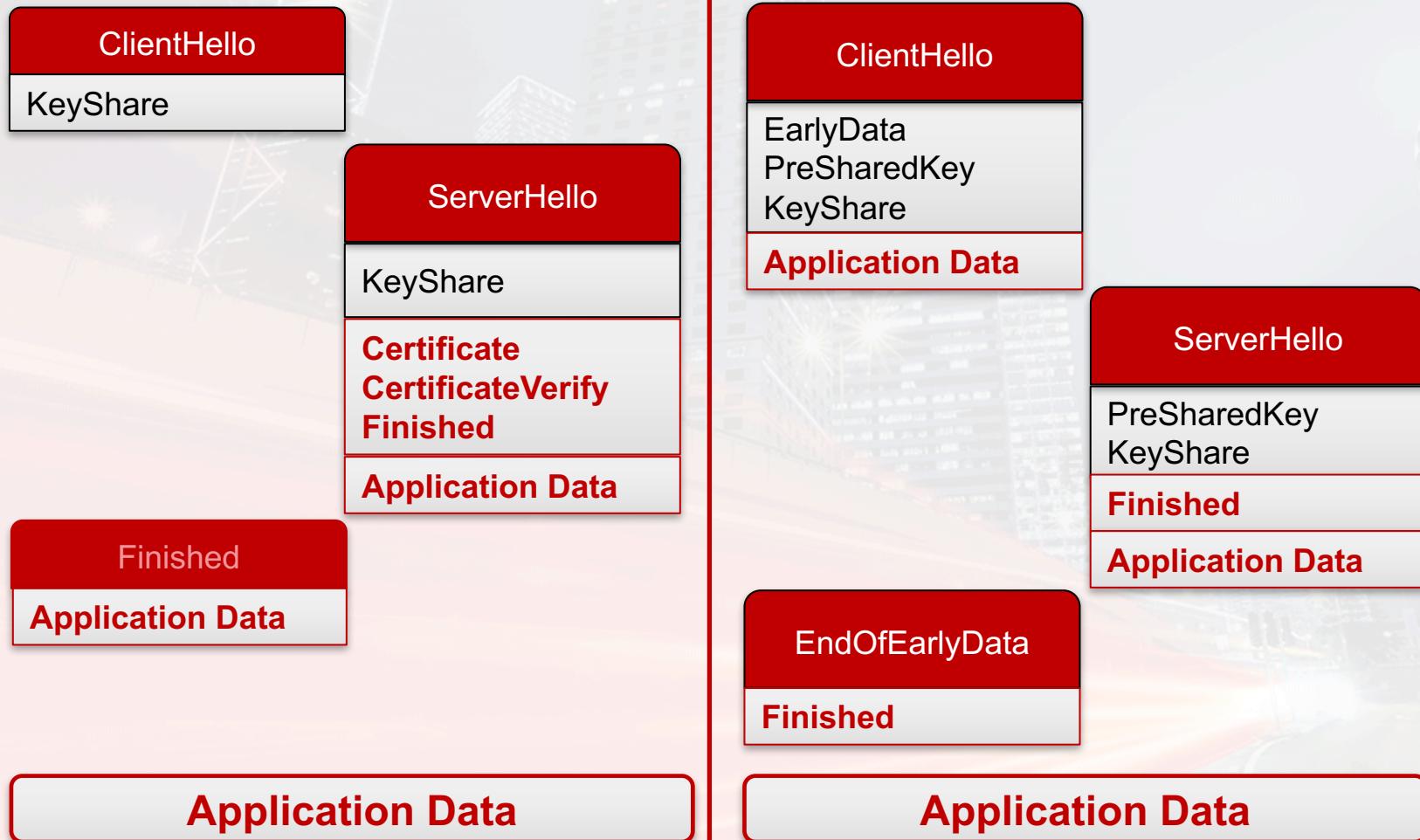
Speed

- TLS impacts *latency*, not throughput
- Protocol setup requires one round trip
- Resume can be zero round trips
- Send application data ASAP

TLS 1.2 vs 1.3

Your POODLE will not DROWN in CRIME

- All symmetric ciphers are AEAD
 - AES-GCM, AES-CCM, ChaCha20-Poly1305
- All key exchanges are ephemeral
 - FFDH over standard groups and ECDH
- All signatures are modern
 - RSA-PSS, ECDSA, EdDSA
- Troublesome features discarded
 - Compression, Export Ciphers, Explicit IV


Why TLS 1.3?

- Lower latency == happier users
- Conservative design == less churn
- Heavily reviewed and *deployed today*

Zero Round Trip Time

Standard Setup vs. 0-RTT

Security implications

- 0-RTT requests can be replayed
- Let's replay "Transfer 5 dollars to Scott"
- Another corner case – early server data
- *We have a layering violation!*

Reetbleed!

How on Earth did this happen?

- Unintended replays are a problem *now*
- Important transactions are *idempotent*
- Spec suggests users opt-in to 0-RTT
- Early draft adopters are working on patterns for application-level checks

Everything is ok

Zero Round Trip Time

Do...

- Design for idempotence
- Check for your stack's flag if you can't

Do Not...

- Turn on 0-RTT blindly for all requests
- Make a logo

Monitoring Traffic Securely

Agreeing on a common key

1. Client generates key and encrypts to server's public key
2. Client and Server use Diffie-Hellman with ephemeral parameters

RSA Key Exchange

- Option 1 is secure so long as the server's private key is never disclosed
- If that key is leaked or broken, all historic traffic can be decrypted

Diffie-Hellman Key Exchange

- Option 2 is secure as long as the server is not using a compromised key
- Attacker needs server private key AND intercept the DH exchange to compromise the session key

You get forward secrecy!

- All key exchanges in TLS 1.3 provide forward secrecy
- Great for practical security
- Great for hedge against unknown cryptographic breaks

...but

Monitoring solutions impacted

- If you rely on decrypting historic ciphertext, this means you
- There's a reason - we broke attackers that want to do the same thing
- IF you are affected, hit the whiteboard

Monitoring Traffic Securely

Do:

- Deploy TLS 1.3
- Monitor managed environments

Don't:

- Hobble TLS 1.3
- Prefer down-level for ease of monitoring

Resumption Key Management

Session Resumption

- Remember 0-RTT?
- That pre-shared key needs to be shared
- In practice, client informs server of key

Session Resumption

1. Keep a list of all historic keys and give the client an identifier
2. Keep one key, use it to encrypt PSK

Session Resumption

- The spec leaves it to the implementer
- Option 2 is a safe bet
- Key management is your problem

Key Management Hiccups

- Unsynchronized keys across servers
 - 0-RTT Fails
- Failing to rotate aggressively
 - Great single point of failure
- Failing to negotiate ephemeral key
 - Limited benefits of forward secrecy

Resumption Key Management

Do:

- Rotate keys on an aggressive schedule
- Distribute keys to server farm securely
- Negotiate ephemeral keys after PSK

Don't:

- Think it is secure out of the box

Thank You!

Thank You

- Crypto Services at NCC Group
- Joe Salowey of Tableau
- Nick Sullivan of Cloudflare
- The IETF Working Group

More Information

TLS 1.3 Specification

<https://github.com/tlswg/tls13-spec>

Bulletproof TLS Newsletter

<https://www.feistyduck.com/bulletproof-tls-newsletter/>

Cloudflare Blog

<https://blog.cloudflare.com/>

Questions? Comments?

scott.stender@nccgroup.trust

[@ScottStender](https://twitter.com/ScottStender)