
Securely Deploying TLS 1.3
September 2017



Agenda
• Why TLS 1.3?

• Zero Round Trip Time (0-RTT) requests

• Forward secrecy

• Resumption key management



Why TLS 1.3?



Speed
• TLS impacts latency, not thoroughput

• Protocol setup requires one round trip

• Resume can be zero round trips

• Send application data ASAP



TLS 1.2 vs 1.3

ClientHello

…

ServerHello

Certificate
ServerKeyExchange
ServerHelloDone

ChangeCipherSpec

Finished

ClientHello

KeyShare

Application Data

ClientKeyExchange

ChangeCipherSpec

Finished

KeyShare

ServerHello

Certificate
CertificateVerify
Finished

Application Data

Finished

Application Data

Application Data



Your POODLE will not DROWN in CRIME
• All symmetric ciphers are AEAD

• AES-GCM, AES-CCM, ChaCha20-Poly1305

• All key exchanges are ephemeral
• FFDH over standard groups and ECDH

• All signatures are modern
• RSA-PSS, ECDSA, EdDSA

• Troublesome features discarded
• Compression, Export Ciphers, Explicit IV



Why TLS 1.3?

• Lower latency == happier users

• Conservative design == less churn

• Heavily reviewed and deployed today



Zero Round Trip Time



Standard Setup vs. 0-RTT

PreSharedKey
KeyShare

ServerHello

Finished
Application Data

Application Data

ClientHello

KeyShare

KeyShare

ServerHello

Certificate
CertificateVerify
Finished

Application Data

Finished

Application Data

Application Data

EarlyData
PreSharedKey
KeyShare

ClientHello

Application Data

EndOfEarlyData

Finished



Security implications
• 0-RTT requests can be replayed

• Let’s replay “Transfer 5 dollars to Scott”

• Another corner case – early server data

• We have a layering violation!



Reetbleed!



How on Earth did this happen?
• Unintended replays are a problem now

• Important transactions are idempotent

• Spec suggests users opt-in to 0-RTT

• Early draft adopters are working on 
patterns for application-level checks



Everything is ok



Zero Round Trip Time
Do…
• Design for idempotence
• Check for your stack’s flag if you can’t

Do Not...
• Turn on 0-RTT blindly for all requests
• Make a logo



Monitoring Traffic Securely



Agreeing on a common key
1. Client generates key and encrypts to 

server’s public key

2. Client and Server use Diffie-Hellman 
with ephemeral parameters



RSA Key Exchange
• Option 1 is secure so long as the 

server’s private key is never disclosed

• If that key is leaked or broken, all 
historic traffic can be decrypted



Diffie-Hellman Key Exchange
• Option 2 is secure as long as the server 

is not using a compromised key

• Attacker needs server private key AND 
intercept the DH exchange to 
compromise the session key



You get forward secrecy!
• All key exchanges in TLS 1.3 provide 

forward secrecy

• Great for practical security

• Great for hedge against unknown 
cryptographic breaks

...but



Monitoring solutions impacted
• If you rely on decrypting historic 

ciphertext, this means you

• There’s a reason - we broke attackers 
that want to do the same thing

• IF you are affected, hit the whiteboard



Monitoring Traffic Securely
Do:
• Deploy TLS 1.3
• Monitor managed environments

Don’t:
• Hobble TLS 1.3
• Prefer down-level for ease of monitoring



Resumption Key Management



Session Resumption
• Remember 0-RTT? 

• That pre-shared key needs to be shared

• In practice, client informs server of key



24

Session Resumption
1. Keep a list of all historic keys and give 

the client an identifier

2. Keep one key, use it to encrypt PSK



25

Session Resumption
• The spec leaves it to the implementer

• Option 2 is a safe bet

• Key management is your problem



26

Key Management Hiccups
• Unsynchronized keys across servers

• 0-RTT Fails

• Failing to rotate aggressively
• Great single point of failure

• Failing to negotiate ephemeral key
• Limited benefits of forward secrecy



Resumption Key Management
Do:
• Rotate keys on an aggressive schedule
• Distribute keys to server farm securely
• Negotiate ephemeral keys after PSK

Don’t:
• Think it is secure out of the box

27



Thank You!



Thank You
• Crypto Services at NCC Group

• Joe Salowey of Tableau
• Nick Sullivan of Cloudflare

• The IETF Working Group



More Information
TLS 1.3 Specification
https://github.com/tlswg/tls13-spec

Bulletproof TLS Newsletter
https://www.feistyduck.com/bulletproof-tls-
newsletter/

Cloudflare Blog
https://blog.cloudflare.com/



Questions? Comments?
scott.stender@nccgroup.trust
@ScottStender


