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Agenda
• Why TLS 1.3?

• Zero Round Trip Time (0-RTT) requests

• Forward secrecy

• Resumption key management



Why TLS 1.3?



Speed
• TLS impacts latency, not thoroughput

• Protocol setup requires one round trip

• Resume can be zero round trips

• Send application data ASAP



TLS 1.2 vs 1.3
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Your POODLE will not DROWN in CRIME
• All symmetric ciphers are AEAD

• AES-GCM, AES-CCM, ChaCha20-Poly1305

• All key exchanges are ephemeral
• FFDH over standard groups and ECDH

• All signatures are modern
• RSA-PSS, ECDSA, EdDSA

• Troublesome features discarded
• Compression, Export Ciphers, Explicit IV



Why TLS 1.3?

• Lower latency == happier users

• Conservative design == less churn

• Heavily reviewed and deployed today



Zero Round Trip Time



Standard Setup vs. 0-RTT
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Security implications
• 0-RTT requests can be replayed

• Let’s replay “Transfer 5 dollars to Scott”

• Another corner case – early server data

• We have a layering violation!



Reetbleed!



How on Earth did this happen?
• Unintended replays are a problem now

• Important transactions are idempotent

• Spec suggests users opt-in to 0-RTT

• Early draft adopters are working on 
patterns for application-level checks



Everything is ok



Zero Round Trip Time
Do…
• Design for idempotence
• Check for your stack’s flag if you can’t

Do Not...
• Turn on 0-RTT blindly for all requests
• Make a logo



Monitoring Traffic Securely



Agreeing on a common key
1. Client generates key and encrypts to 

server’s public key

2. Client and Server use Diffie-Hellman 
with ephemeral parameters



RSA Key Exchange
• Option 1 is secure so long as the 

server’s private key is never disclosed

• If that key is leaked or broken, all 
historic traffic can be decrypted



Diffie-Hellman Key Exchange
• Option 2 is secure as long as the server 

is not using a compromised key

• Attacker needs server private key AND 
intercept the DH exchange to 
compromise the session key



You get forward secrecy!
• All key exchanges in TLS 1.3 provide 

forward secrecy

• Great for practical security

• Great for hedge against unknown 
cryptographic breaks

...but



Monitoring solutions impacted
• If you rely on decrypting historic 

ciphertext, this means you

• There’s a reason - we broke attackers 
that want to do the same thing

• IF you are affected, hit the whiteboard



Monitoring Traffic Securely
Do:
• Deploy TLS 1.3
• Monitor managed environments

Don’t:
• Hobble TLS 1.3
• Prefer down-level for ease of monitoring



Resumption Key Management



Session Resumption
• Remember 0-RTT? 

• That pre-shared key needs to be shared

• In practice, client informs server of key
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Session Resumption
1. Keep a list of all historic keys and give 

the client an identifier

2. Keep one key, use it to encrypt PSK
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Session Resumption
• The spec leaves it to the implementer

• Option 2 is a safe bet

• Key management is your problem
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Key Management Hiccups
• Unsynchronized keys across servers

• 0-RTT Fails

• Failing to rotate aggressively
• Great single point of failure

• Failing to negotiate ephemeral key
• Limited benefits of forward secrecy



Resumption Key Management
Do:
• Rotate keys on an aggressive schedule
• Distribute keys to server farm securely
• Negotiate ephemeral keys after PSK

Don’t:
• Think it is secure out of the box
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Thank You!



Thank You
• Crypto Services at NCC Group

• Joe Salowey of Tableau
• Nick Sullivan of Cloudflare

• The IETF Working Group



More Information
TLS 1.3 Specification
https://github.com/tlswg/tls13-spec

Bulletproof TLS Newsletter
https://www.feistyduck.com/bulletproof-tls-
newsletter/

Cloudflare Blog
https://blog.cloudflare.com/



Questions? Comments?
scott.stender@nccgroup.trust
@ScottStender


