
Deconstructing ColdFusion

Chris Eng and Brandon Creighton

Veracode, Inc.

Hi

� Chris Eng

– Senior Director of Research at Veracode

� Previously

– Technical Director and Consultant at

@stake (and Symantec, through

acquisition)

– Security Researcher/Electrical Engineer at

NSA

� Brandon Creighton

– Security Researcher at Veracode

� Previously

– Engineer/architect at VeriSign MSS (ex-

Guardent); focus on high-volume security

event storage & transmission

� Other

– Operations/goon volunteer at several
NSA

� Other

– Frequent speaker at security conferences

– Contributor to various industry projects,

mostly around classification and metrics

– Advisory board for SOURCE

Conferences (Boston and Barcelona)

– Developed @stake WebProxy

– Operations/goon volunteer at several

conferences (DEFCON, SOURCE BOS,

HOPE 5)

– Ninja Networks party badge firmware

dev

– Old stuff: Stint as the maintainer of

OpenBSD/vax (~1999-2002)

Motivations

� Few resources available on securing or testing ColdFusion apps

– ColdFusion 8 developer security guidelines from 2007

http://www.adobe.com/devnet/coldfusion/articles/dev_security/

coldfusion_security_cf8.pdf

– “Securing Applications” section of ColdFusion 9 developer guide is similar, almost

entirely about authentication methods

http://help.adobe.com/en_US/ColdFusion/9.0/Developing/coldfusion_9_dev.pdf

– OWASP ColdFusion ESAPI started May 2009, abandoned (?) June 2009– OWASP ColdFusion ESAPI started May 2009, abandoned (?) June 2009

http://code.google.com/p/owasp-esapi-coldfusion/source/list

– EUSec presentation from 2006 focused mostly on the infrastructure footprint and

deployment issues (admin interfaces, privilege levels, etc.)

http://eusecwest.com/esw06/esw06-davis.pdf

� We were developing ColdFusion support for our binary analysis

service, so we were doing the research anyway

� No platform 0-days here; this is all about vulnerabilities in custom apps

Agenda

� ColdFusion Background and History

� Platform Architecture and CFML Crash Course

� Finding Vulnerabilities in ColdFusion Applications

� ColdFusion Behind the Curtain (if time permits)

ColdFusion Background

and Historyand History

ColdFusion History

� Originally released in 1995 by Allaire

– Motivation: make it easier to connect simple HTML pages to a database

– Initially Windows only with built-in web server

� Migration to J2EE with ColdFusion 6 in 2002

– Everything compiled to Java classes before being run

– Apps can be bundled up as WARs/EARs, including admin interface if desired

– Bundled with JRun– Bundled with JRun

� Latest version is ColdFusion 9 released in 2009

– Most recent features focus on integration with other technologies, e.g. Flash, Flex,

AIR, Exchange, MS Office, etc.

Historical Vulnerabilities

� In the recent past

– CVE-2010-2861: Unauthenticated directory traversal in Administrative interface

– CVE-2009-3467 and CVE-2010-1293: Unspecified XSS vulnerabilities

– CVE-2009-1876: Unspecified double-encoded null character infoleak

� Lots of XSS in sample apps, administrator UI, error pages

� Source code disclosure (canonicalization issues, sample apps)

� Authorization vulnerabilities related to administrative UI� Authorization vulnerabilities related to administrative UI

� Prior to ColdFusion 6 (Allaire/Macromedia days)

– Arbitrary file retrieval

– XOR used to encrypt passwords

– Predictable session identifiers (may have been sequential, IIRC)

– Various DoS conditions and buffer overflows

Source: National Vulnerability Database

Who Uses ColdFusion Anyway?

� Lots of people, believe it or not. Let’s start by asking Google…

Search Term Hits

ext:asp 1,110,000,000

ext:aspx 1,320,000,000

ext:cfm 213,000,000ext:cfm 213,000,000

ext:jsp 556,000,000

ext:php 6,530,000,000

ext:pl 598,000,000

ext:py 8,210,000

ext:rb 372,000

Source: Google, October 25, 2010

Who Uses ColdFusion Anyway?

� “More than 770,000 developers at over 12,000 companies worldwide

rely on Adobe® ColdFusion® software to rapidly build and deploy

Internet applications. And with more than 125,000 ColdFusion servers

deployed, ColdFusion is one of the most widely adopted web

technologies in the industry.”

Source: http://www.adobe.com/products/coldfusion/customers/

ColdFusion Prevalence by Vertical

Source: WhiteHat Website Security Statistics Report, 9th Edition, May 2010

Platform Architecture and

CFML Crash CourseCFML Crash Course

CFML Building Blocks

� Pages

– Main entry points of a CF application

– Similar to an HTML page (or PHP, JSP, etc.) except using CFML tags

– .cfm extension

� Components

– Contain reusable functions / variables for use by other code

– Written entirely in CFML– Written entirely in CFML

– .cfc extension

� Functions (UDFs)

– Defined inside components or pages

– Called using CFINVOKE or inside a CFSCRIPT block/expression

– Can be exposed as an entry point inside components

CFML Page Lifecycle, Part 1

� When a page is requested, search

for (and execute) Application.cfc or

Application.cfm first

� Application.cfm is a plain old CFML

file, while Application.cfc defines

hooks into application events

� Common uses for this mechanism:

Request for
index.cfm

Local
Application.cfc

Local
Application.cfm

CFML from
index.cfm

Parent
Application.cfc

N

N

N

Y

Y

Y

� Common uses for this mechanism:

– Login management

– Centralized data validation

– Messing with session variables

– Error handling

Parent
Application.cfm

App Root
Application.cfc

App Root
Application.cfm

...

N

N

N

Y

Y

Y

Y/N

Inside Application.cfc

� onApplicationStart: application start (can access request variables)

� onApplicationEnd: application timeout/server shutdown

� onSessionStart: new session (can access request variables)

� onSessionEnd: session ends

� onRequestStart: called before every request (can access request variables)

� onRequest: called after onRequestStart code ends (can access request

variables) variables)

� onRequestEnd: called after request has been processed (can access request

variables)

� onMissingTemplate: called when an unknown page has been requested (can

access request variables)

� onError: when an uncaught exception occurs (can access request variables

sometimes; check Event value)

CFML Page Lifecycle, Part 2

� A single page can include code

from many different locations

� Custom tags are similar to

local includes, but with

different dataflow behavior

– <cf_foo> is kind of like
<cfinclude template="foo.cfm">

Request for
index.cfm

Included
local .cfm

files

Local .cfm
files via

custom tags

Servlet
JspContext

UDFs
from remote
.cfc files

<cfinclude template="foo.cfm">

except that changes made to

variables are not visible in the

calling page

� There are also built-in tags for

interacting with remote HTTP,

FTP, LDAP, SMTP, and POP

servers

Bridges

Servlet
Methods

Custom C++
or Java tags
(CFX API)

JSP Custom
Tag Libraries

.NET
Assemblies

UDFs
from local
.cfc files

Variables are Dynamically Scoped

� Silos of global variables named “scopes” can be confusing

� Variable accesses can be fully-qualified (prefixed with scope name) or

not qualified at all
<cfoutput>#foo#</cfoutput>

<cfoutput>#URL.foo#</cfoutput>

� The unqualified scope can be temporarily “enhanced” with the results

of a query row or loop iteration, e.g.of a query row or loop iteration, e.g.
<cfquery name="qry" datasource="myDataSource">

SELECT col1, col2, col3 FROM myTable

</cfquery>

<cfoutput query="qry">#col1#, #col2#, #col3#</cfoutput>

<cfoutput query="qry">#qry.col1#, #qry.col2#, #qry.col3#</cfoutput>

� Output without iteration is also possible:
<cfoutput> #qry.col1#, #qry.col2#, #qry.col3# </cfoutput>

Variable Scopes

Scope Description

Variables the variable binding stack local to the current page

Application global to every page in an app; set in application.cfc

Arguments arguments to a function (may be tainted if called by a remote UDF)

Attributes used to pass data to .cfm custom tag pages/threads

Caller used within custom tags; reference to the calling page’s Variables scope

Request persistent across all code for the lifetime of the request; useful within custom tags

and cfincluded pagesand cfincluded pages

This struct/component “member variables”

ThisTag analogous to Request scope for custom tag pages

URL parameters present in HTTP query string

Form parameters present in HTTP POST body

Cookie HTTP request cookies

CGI CGI variables, some server-defined and some tainted

Session persistent across a single site visit

Client client-specific persistent storage; outlasts session variables

Variable “Types” in ColdFusion

� The CF type system hasn’t changed significantly since the 90s

� Implicit conversions to/from strings are the norm

� Instead of type checks, validation often done with pattern matches:

– CFPARAM and CFARGUMENT “type” attributes

� <cfparam name="phoneno" type="telephone"> will throw an exception if “phoneno”

is set and is not formatted as a standard US/NANPA phone number

� Types “boolean”, “creditcard”, “date”, “time”, “eurodate”, “eurotime”, “email”, “float”, � Types “boolean”, “creditcard”, “date”, “time”, “eurodate”, “eurotime”, “email”, “float”,

“numeric”, “guid”, “integer”, “range”, “regex”, “ssn”, “telephone”, “URL”, “uuid”, “usdate”,

“variablename”, “xml”, “zipcode” all check the string representation of the variable against

regexes

� Limited type checks are possible: “array”, “query”, “struct”, and “string”

� Numerous opaque types reused among contexts

– Example: queries are used for database queries, directory iteration, ldap queries,

http/ftp requests, and others

CF Expressions

� Automatic interpolation with #-expressions inside cfoutput and

attributes:
– <cfoutput>#URL.foo#</cfoutput>

– <cfloop query = "MyQuery" startRow = "#Start#" endRow = "#End#">

<cfoutput>#MyQuery.MyColName#</cfoutput>

</cfloop>

� Dynamic scoping can hinder analysis

– vs.– <cfset foo="bar"> vs. <cfset "#foo#"="#bar#">

– SetVariable("foo", "bar") vs. SetVariable(foo, bar)

� Dynamic evaluation functions

– Evaluate() and PrecisionEvaluate()

– IIF()

– DE() – used in conjunction with the other two

Finding Vulnerabilities in

ColdFusion ApplicationsColdFusion Applications

Spot the Tainted Data

� URL.any_variable

� FORM.any_variable

� COOKIE.any_variable

� FLASH.any_variable

� CGI.some_variables

– e.g. PATH_INFO, QUERY_STRING, CONTENT_TYPE, CONTENT_LENGTH, – e.g. PATH_INFO, QUERY_STRING, CONTENT_TYPE, CONTENT_LENGTH,

HTTP_REFERER, HTTP_USER_AGENT, etc.

– More on this later

� SESSION.some_variables

– Depends on application logic

� CLIENT.any_variable

– Only when client variables are enabled and storage is cookie-based

� CFFUNCTION arguments, when access=“remote”

XSS? How to FAIL with scriptProtect

� Using scriptProtect attribute

– Replaces blacklisted tags such as <script>, <object>, etc. with <InvalidTag> when

rendering user-supplied input

– Doesn't block injection, aside from the most basic attack strings

� Example
– <cfapplication scriptProtect="all">

<cfoutput>You typed #URL.foo#</cfoutput>

– Requesting page with ?foo=<script>alert("foo")</script> will return

You typed <InvalidTag>alert("foo")</script>

� Trivial to circumvent

– One of many possibilities: requesting page with

?foo=

will happily execute the alert() call

� Other regexes can be added to the blacklist, but it’s still a blacklist (look

for neo-security.xml if you insist)

So What? I Have Encoding Functions

� HTMLEditFormat() and HTMLCodeFormat() don’t perform sufficient

HTML encoding

– They only encode <, >, ", and &

– Ineffective for unquoted or single-quoted tag attributes, or within script blocks

�

�

� <script>#HTMLEditFormat(URL.foo)#</script>

� <script>var x='#HTMLEditFormat(URL.foo)#';</script>

� etc.

– XMLFormat() encodes single quotes, but still won’t prevent XSS in all situations,

e.g. inside Javascript or CSS blocks

� Contextual encoding? Have to roll your own…

No Problem, I’ll Just Whitelist!

� This should work, right?
– <cfoutput>#int(URL.count)#</cfoutput>

– <cfset safenum=NumberFormat(FORM.bar)>

– <cfoutput>#JavaCast("boolean", URL.booly)#</cfoutput>

� Default error page

– scriptProtect is enabled on the default error page, but we already saw how

(in)effective that is

What If I Use a Custom Error Page?

� Avoid XSS risks in the default error page by defining your own custom

error page
<cferror template="errorhandler.cfm" type="request">

Don’t use #error.diagnostics# or #error.message# in your error page!

� Exception handling also works
<cftry>

<cfoutput>#int(URL.count)#</cfoutput>

<cfcatch>Exception caught!</cfcatch>

</cftry>

Don’t output #cfcatch.message# in your catch block without properly encoding it first!

Common SQL Injection Mistakes

� Using CFQUERY without CFQUERYPARAM

(also CFSTOREDPROC without CFPROCPARAM)
<cfquery name="getContent" dataSource="myData">

SELECT * FROM pages WHERE pageID = #Page_ID# OR

title = '#Title_Search#'</cfquery>

� #Title_Search# is not injectable; CF will automatically escape single

quotes for expressions inside the CFQUERY tag

#Page_ID# is still injectable because it’s not quoted #Page_ID# is still injectable because it’s not quoted

� Using CFQUERYPARAM
<cfquery name="getContent" dataSource="myData">

SELECT * FROM pages WHERE pageID =

<cfqueryparam value="#Page_ID#" cfsqltype="cf_sql_integer"></cfquery>

(For unknown reasons, cfsqltype is an optional attribute)

Other OWASP Top Ten Vulnerabilities

� We won’t waste time rehashing all of the common web vulnerabilities

– Of course you can have CSRF, insecure cryptographic storage, broken

authentication/authorization, etc. in a ColdFusion app

– Nothing unique enough to warrant discussion here

� Here are some tags to watch out for; it should be obvious why they are

dangerous if not properly restricted

– <cffile>– <cffile>

– <cfdirectory>

– <cfexecute>

– <cfregistry>

– <cfobject>

– <cfinclude>

Directly Invoking UDFs

� Every method in a .cfc file is a potential entry point, e.g.

http://example.com/foo.cfc?method=xyzzy&arga=vala&argb=valb

� This URL will invoke method xyzzy on an anonymous instance of

component foo.cfc, with arguments arga=“vala” and argb=“valb” (also

valid with POST variables, although method must be passed in the

query string)

– If method doesn't exist, onMissingMethod is called– If method doesn't exist, onMissingMethod is called

– If method isn't specified, then the request gets redirected to

CFIDE/componentutils/cfcexplorer.cfc

– Rules for application.cfc and application.cfm still apply

� In a source code review, look for sensitive functionality implemented as

UDFs, with the access attribute set to “remote”

e.g. <cffunction name="ListCategories" access="remote" returntype="query">

Search Order for Unscoped Variables

� If you use a variable name without a scope prefix, ColdFusion checks

the scopes in the following order to find the variable:

1. Local (function-local, UDFs and CFCs only) 7. CGI

2. Arguments 8. Cffile

3. Thread local (inside threads only) 9. URL

4. Query (not a true scope; variables in query loops) 10. Form

5. Thread 11. Cookie

� For example, in applications with sloppy variable naming, you can almost

always override POST (Form) parameters with GET (URL) parameters

Source: ColdFusion 9 Developer Guide

5. Thread 11. Cookie

6. Variables 12. Client

Exploiting Unscoped Variables

� Consider this logic to process a user login (yes, it’s contrived)
<cfif AuthenticateUser(FORM.username, FORM.password) and

IsAdministrator(FORM.username)>

<cfset Client.admin = "true">

<cfelse>

<cfset Client.admin = "false">

</cfif>

� Other pages check whether the admin variable is true before � Other pages check whether the admin variable is true before

performing restricted actions
<cfif admin eq "true">

Put privileged functionality here!

<cfelse>

Sorry, only admins can access this!

</cfif>

� Putting ?admin=true in the URL will bypass this check because URL

variables precede Client variables in the search order

� Compare reads/writes of variables to identify scoping inconsistencies

Exploiting User-Supplied Variable Scope

� Code similar to the following
<cfloop item="x" collection="#URL#">

<cfscript>SetVariable(x, Evaluate("URL." & x));</cfscript>

</cfloop>

...

<cfif Client.username eq "admin">

Put privileged functionality here!

<cfelse>

Sorry, only admins can access this!Sorry, only admins can access this!

</cfif>

� Attack by putting ?client.username=admin in the URL

� Beware of any variable assignments with user-supplied LHS!
e.g. <cfset "#URL.varname#" = "#URL.varvalue#">

Credit: Martin Holst Swende (http://swende.se) via email

Undefined Variables

� Similarly, ensure that variables are always initialized properly

� CFPARAM’s “default” attribute only sets a variable if it’s not set already;

use CFSET or an assignment inside cfscript

� Assume undefined, unqualified variables are filled with request data!

� It’s common to see code like:
<cfparam name="pagenum" default="1">

<cfoutput><cfoutput>

Now showing page #pagenum#.

</cfoutput>

� This is exploitable; GET and POST variables will override pagenum

Environment Variables

� Legitimate variables in the CGI scope can be manipulated and in some

cases overridden via HTTP headers

� For example:
GET /index.cfm HTTP/1.0

Host: example.com

The CF expression #CGI.HTTP_HOST# will contain “example.com”
GET /index.cfm HTTP/1.0

HTTP_HOST: evil.comHTTP_HOST: evil.com

Host: example.com

The CF expression #CGI.HTTP_HOST# will contain “evil.com”

� You can also override #CGI.SERVER_SOFTWARE#,

#CGI.PATH_INFO#, #CGI.WEB_SERVER_API#, and many others

� Be particularly careful with #CGI.AUTH_USER#

Persistence Issues

� Client scope variables can be configured in Application.cfm in the

CFAPPLICATION tag (attribute “clientmanagement”) or

this.clientmanagement in Application.cfc

– Keyed to browser via CFTOKEN/CFID cookies; actual variable storage may be

client-side (other cookies) or server-side (in a database or the Windows registry)

– All of these cookies persist by default, so watch for cookie theft/stuffing attacks

� When client scope is enabled, tampering is possible if cookie storage is � When client scope is enabled, tampering is possible if cookie storage is

enabled (“clientStorage” attribute/variable)
e.g. <cfapplication clientManagement="yes" clientStorage="Cookie">

– No encryption or MAC; everything is in plain text

ColdFusion Behind the Curtain

Proprietary Classfile Format

� CF can compile pages/components to sets of Java classes using the

cfcompile utility

� One class per page plus one for every UDF

� All class generated for a single CFM/CFC file are placed in one file,

concatenated; a custom ClassLoader is used by CF to load them up

� Names of the resulting concatenated files are identical to those of the

source filessource files

� Separately, ColdFusion Administrator can be used to bundle a directory

as an EAR/WAR

A Way to Slice Them: cfexplode

� Free, open-source Java utility written by Brandon Creighton at

Veracode, available from Google Code:

http://code.google.com/p/cfexplode/

� Splits concatenated classfiles into many; can accept individual compiled

CFC/CFM files or full WAR/EAR/JAR zip archives
% java -jar cfexplode.jar outdir index.cfm

% ls -l outdir% ls -l outdir

total 40

-rw-r--r-- 1 cstone cstone 3534 2010-07-16 15:23 index.cfm.0.class

-rw-r--r-- 1 cstone cstone 2095 2010-07-16 15:23 index.cfm.3534.class

-rw-r--r-- 1 cstone cstone 31234 2010-07-16 15:23 index.cfm.5629.class

� Individual classes easily analyzable (even with the free JAD and JD-GUI)

Page/Component/Function Java Classes

� CFM/CFC: main point of entry is CFPage.runPage()

– Other methods called beforehand set up data: variable bindings

(bindPageVariables()), function names (registerUDFs()), data sources

� <cffunction>: main point of entry is UDFMethod.runFunction()

– Argument validation is done by the runtime; any types specified in <cfargument>

tags are translated into a static Map instance named “metaData”

� CfJspPage (base class).pageContext is a plain old JspContext, so � CfJspPage (base class).pageContext is a plain old JspContext, so

pageContext.getOut() returns a JspWriter; this is used to do the bulk

of the output

– getOut() also used for things that aren’t actually output to the screen, such as

database queries

� Occasionally, parts of the body are factored out of runPage into

separate private methods named factor0(), factor1(), factor2()..

CF Variables in Java: Static References

� Static references, usually used

for local bindings
<cfset vfoo="value 1">

<cfparam name="pbar"

default="value2">

<html>

<cfoutput>

vfoo: #vfoo# pbar: #pbar#

</cfoutput>

� When compiled:
protected final Object runPage()

{

// …

VFOO.set("value 1");

_whitespace(out, "\n");

checkSimpleParameter(PBAR,

"value2");

out.write("\n\n<html>\n ");
</cfoutput>

</html>

out.write("\n\n<html>\n ");

// …

out.write("\n vfoo: ");

out.write(Cast._String(

_autoscalarize(VFOO)));

out.write(" pbar: ");

out.write(Cast._String(

_autoscalarize(PBAR)));

_whitespace(out, "\n ");

// …

}

CF Variables in Java: Static References

� How variables are bound to the page
private Variable PBAR;

private Variable VFOO;

protected final void bindPageVariables(VariableScope varscope,

LocalScope locscope)

{

super.bindPageVariables(varscope, locscope);

PBAR = bindPageVariable("PBAR", varscope, locscope);

VFOO = bindPageVariable("VFOO", varscope, locscope);VFOO = bindPageVariable("VFOO", varscope, locscope);

}

CF Variables in Java: Dynamic References

� Dynamic references, explicitly-scoped variables
<html>

<cfoutput>

#url.quux#

</cfoutput>

</html>

� When compiled:
protected final Object runPage() protected final Object runPage()

{

// …

out.write("<html>\n ");

_whitespace(out, "\n ");

out.write(Cast._String(

_resolveAndAutoscalarize("URL", _new String[] { "QUUX” }))

);

// …

}

Other Ways to Set/Access Variables

� Bind the name “scope” to a variable that represents the results of the

query
– <cfquery name="scope">

� Looping over query results
– <cfoutput query="resultset">

– <cfloop query>

� Structure member accesses� Structure member accesses
– <cfset x=StructNew()>

– <cfset x.member="val1">

� <cfdump> tag for dumping variable contents

� Other I/O: files, HTTP requests, LDAP requests, mail messages

WAR/Application Structure

� CFMs/CFCs handled by different Servlets (CfmServlet and CFCServlet,

respectively)

� These locate the class(es) necessary based on URL and parameters,

then invoke their runPage()/runFunction() methods

� Chain of coldfusion.filter.FusionFilter classes (not related to J2EE Servlet

filters); these handle client-scope propagation

� Even if the “Include CF Administrator” option is unchecked, many � Even if the “Include CF Administrator” option is unchecked, many

pages/components inside the CFIDE/ directory are included inside

every WAR

– Mapped by default

– Access may not be password-protected; easily disabled by a change to

neo-security.xml (see http://kb2.adobe.com/cps/404/kb404799.html)

WAR Structure: Other Servlets

� *.jsp: JSPLicenseServlet; passthrough for jrun.jsp.JSPServlet

� /flex2gateway/*, /flashservices/gateway/*, /CFFormGateway/*:

FLEX/plain Flash Remoting gateways for CFC methods

– /flashservices/gateway/path1.path2.component ⇒ path1/path2/component.cfc

– Gateways can be used in ActionScript NetServices.createGatewayConnection()

– Used internally by <cfgrid> and other built-in cf tags that generate Flash-based UI

automaticallyautomatically

� GraphServlet: handles /CFIDE/GraphData.cfm (not actually a cfm file);

used by the cfchart tag.

� CFFileServlet: handles /CFFileServlet/*, and serves up files from a cache

directory; used by <cfimage>

� /cfform-internal/*: FLEX FileManagerServlet; serves a handful of

dynamically-generated images and js files

� /WSRPProducer/*: WSRP portlet management Axis service

Final Thoughts

Conclusions

� ColdFusion designed to be simple for “developers” to use, but it’s

actually very complicated underneath

� It’s easy to make coding mistakes (or overlook vulnerabilities during

code review) if you don’t understand ColdFusion internals

– Request lifecycle

– Error handling

– Variable scopes and precedence– Variable scopes and precedence

� Like many web application platforms, ColdFusion has a bunch of

“features” that are useful for debugging but also open up holes

� ColdFusion-generated Java classes are pretty ugly; use cfexplode to help

reverse engineer them

� The attack surface is huge by default; strip out unnecessary components

before deploying

More Resources

� Whitepapers, webcasts, and other educational resources

– http://veracode.com/resources

� Veracode ZeroDay Labs Blog

– http://veracode.com/blog

� Download the cfexplode tool

– http://code.google.com/p/cfexplode/

� Contact info� Contact info

– Email: ceng@veracode.com, bcreighton@veracode.com

– Twitter: @chriseng, @unsynchronized

– Phone: 781.425.6040

