
Copyright © The OWASP Foundation

Permission is granted to copy, distribute and/or modify this document

under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org/

Mistaken Identity
How Not To Build an Account Recovery Process

Nick Freeman
Senior Security Consultant
Security-Assessment.com

OWASP - 2012

Introduction

How users can regain control of their account

after forgetting their password
Forgotten your password?

Reset your password

Send me my password

Help! I can’t Access My Account!

Why talk about it?

I encounter too many webapps that screw this up

The consequences can be dire

OWASP - 2012

What we’ll cover

Username enumeration

Not-so-secret questions

 ‘Send me my password’

Other Bad Ideas

OWASP - 2012

1 – Username Enumeration

• The first stage of the recovery process
asks for a username / email address

• If the username exists, no
email/notification is sent to the user

• No CAPTCHA is in place

Common Scenarios

OWASP - 2012

1 – Username Enumeration

5

OWASP - 2012

1 – Username Enumeration

• User not notified of password reset
initiation

• Provides a simple true/false condition for
username enumeration

• Usernames are ½ of account brute-forcing

The problem

OWASP - 2012

1 – Username Enumeration

• Send an email to the user when
recovery is initiated

• Don’t immediately reset user passwords

• A CAPTCHA will ease the symptoms but
not solve the underlying issue

Some suggestions

OWASP - 2012

2 – Not-So-Secret Questions

• The application allow unlimited secret answer attempts

• Limited choice of secret questions with a finite answer
set – for example:

• What is your favourite sport?

• What was the make of your first car?

• What is your favourite colour?

• AND/OR, questions which can be answered by looking
at someone’s Facebook profile (e.g. DOB, first school,
MMN)

Common Scenarios

OWASP - 2012

2 – Not-So-Secret Questions

9

OWASP - 2012

2 – Not-So-Secret Questions

• Secret answers can be brute forced

• Many user bases will have similar interests

• If ‘allblacks’ is the most popular .NZ password..

• Social networking vastly increases the amount of
info available on a target

• Not as much of a problem for big sweeping
brute force attacks, but a big problem for
targeted attacks

The problem

OWASP - 2012

2 – Not-So-Secret Questions

• DON’T ALLOW UNLIMITED GUESSES!

• Consider lockout / contact customer support after 5
wrong guesses

• Choose (multiple?) questions with many possible answers

• Let users choose their own question

• First teacher

• First home phone number

• Favourite TV/Movie character

• Require the user to have performed an out of band
(email/SMS) check before this step

Some suggestions

OWASP - 2012

3 – ‘Send Me My Password’

• A temporary (often weak) password is sent
via Email (often without Q/A), or worse:

• Their current (stored plaintext..) password is
sent via Email (often without Q/A), or worse:

• Their password is simply displayed to them
through the application (rare but not extinct).

Common Scenarios

OWASP - 2012

3 – ‘Send Me My Password’

13

OWASP - 2012

3 – ‘Send Me My Password’

• Passwords stored in plaintext :(

• If the user’s email account is compromised,
their account is toast

• If the users reuse passwords (which they do)
then several accounts could be compromised

• Many applications don’t force users to change
temporary passwords

The problem

OWASP - 2012

3 – ‘Send Me My Password’

• DON’T STORE PLAINTEXT PASSWORDS!

• Seriously. This ^

• Don’t Email passwords (temporary or otherwise)

• Email a single-use link with a random token (e.g.
GUID) – then get them to answer a question

• Ensure the link expires after an hour

• Additional layer of defense for users with
compromised email accounts

Some suggestions

OWASP - 2012

4 – Other Bad Ideas

• Poor / Lack of input filtering

• UserID can be specified in the ‘choose
a new password’ phase

• No XSRF protection

• App served unencrypted over HTTP

Common Scenarios

OWASP - 2012

4 – Other Bad Ideas

• SMTP injection - User password / token sent to bad guy

• XSS – secret answer / new password sent to attacker

• HTTP Parameter Pollution (HPP)

• e.g.:
http://a.com/?email=attacker@ownyou.com&
username=attacker_account&username=victim_account

• Reused functionality - users can change any user’s password

• XSRF to change a user’s password for them

The problem

OWASP - 2012

4 – Other Bad Ideas

• Filter all inputs!

• Store the userid of the user in the session,
server side

• Use random form tokens for XSRF
protection

• Serve the app over HTTPS

Some suggestions

OWASP - 2012

My idea of a safe password reset process:

1. User supplies email address or username
CAPTCHA required & Input filtered

2. Application emails single-use random link to user
Token sufficiently random, expires after a set period of time

3. User visits link and answers one or more complex
secret questions
Limited number of attempts to answer correctly

4. User is forced to choose a new, complex password
Password is hashed before being stored in the database

OWASP - 2012

Conclusion

Secure password reset is not hard – but there are a lot
of things to take into account

The sensitivity of your application may demand more
stringent measures (reset code sent via SMS, more
stringent lockouts)

https://www.owasp.org/index.php/Forgot_Password_Ch
eat_Sheet - OWASP Cheat Sheet for Forgotten Password
functionality

https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet

