OWASP

The Open Web Application Security Project
6" OWASP AppSec Conference - Italy 2007

"ModSecurity CoreRule Set" :
An Open Source Rule Set for Generic Detection of
Attacks against Web Applications

Ofer Shezaf, ModSecurity Core Rule Set Project ees®@WASP Israel Chapter
leader, CTO, Breach Security

Breach Security, 11 Bareket St, Herzelia, Israel 3867
ofers@breach.com

Abstract: Misused based (i.e rules or signature based) attiatéction is
usually associated with protection from exploit kfiown vulnerabilities.
However, most web applications are custom made thadt vulnerabilities
might be discovered by the attacker first. As alteseb application protection
usually employs positive model misuse detectiorarmomaly based detection.
However, unlike negative security rules, such teqpes are either very
complex or require a large amount of manual coméiian.

The ModSecurity Core Rule Set is an open sourcesetl@iming at providing
effective protection using misuse based negativeurgtg model for web
applications.

This paper will discuss the advantages, as wel@ghallenges and limitations
of ModSecurity Core Rule Set as a negative security nile set and as an
open source project used by many but also scretiniy many.

Keywords: Web Application Firewall, WAF, Intrusion DetectioriWeb
Application Security, ModSecurity, Open Source.

1. Introduction

Web Application Firewalls (WAF) are a new breedirdbrmation security solutions
designed to protect web applications from attadk#\F solutions are capable of
preventing attacks that network firewalls and iston detection systems can't. They
also do not require modification of the applicat&murce code.

The Web Application Security Consortium's Web Apation Firewall Criteria [11]
is the most comprehensive definition to what is ardht is not a web application
firewall.

lieven
Stamp

ModSecurity [2] is an open source application fiashwinder GPL [3]. It is probably
the most widely installed WAF with more than 10,G@6tallations [4]. It boasts a
robust rules language and is many times used afeeence implementation for web
application firewalls.

The Core Rule Set, bundled with ModSecurity is taafeModSecurity rules that

implement a negative security model for protectapplication firewalls. The Core

Rule Set does not possess any knowledge on thecpedtapplication and therefore is
a generic Rule Set. This document discussed howererg rule set can protect
applications using the Core Rule Set as an example.

2. Web Application Firewall Protection Strategies

Most web applications are custom programmed eittternally at organizations or by
a contractor. As a result signature based protec® commonly used by intrusion
detection and prevention systems (IDPS), whicheselion detecting known
vulnerabilities, provides only limited securityweb applications.

Instead, application firewalls enable the use @ fbllowing strategies in order to
provide protection to web applications.

2.1 External patching

External patching, also known as "just-in-time patg" or "virtual patching" is a
limited protection method that has importance aduéhe common software lifecycle
management process in organizations. The later laesability is found in the
development and deployment process the price ofdik gets higher as it disrupts
the development process and delays deploymerite I¥tilnerability is found after an
application is deployed the problem is bigger &mtathe application off line may be
impossible, forcing the organization to leave tpplization operative and incur the
risk.

A WAF can be used to provide protection from a #fewulnerability without
modifying the application. To do that, a rule ieated and implemented in the WAF
that provides additional validation to the spediitd vulnerable.

For example, if the user name field in an applaratis vulnerable to SQL injection
[5] attack, and the usernames are alphanumerichén specific application, the
following rule, in ModSecurity rules language, wobydrovide an external patch:

<LocationMatch "login.php$">
SecRule ARGS:username ""™\w+$" "deny,log"
</LocationMatch>

"ModSecurity Core Rule Set": Generic Detection ob&ks against Web Applications 3

The rules checks that the "username" field on thagih.php" page accepts only
alphanumeric characters. Otherwise the requesnied and an alert is issued.

2.2 Positive security model

Positive security model is a comprehensive securigchanism that provides an
independent input validation envelope to an apptica By defining rules for every

parameter in every page in the application theiegipbn is protected by an additional
security envelop independent from its code. Formgtae, the following rules in

ModSecurity rule language provide such comprehenssecurity to Exchange
Outlook Web Access login page:

SecDefaultAction "log,deny,phase:2"
<LocationMatch "exchweb/bin/auth/owaauth.dll$">
SecRule REQUEST_METHOD !'POST

SecRuleARGS:destination"!"....$" (full regular expres sion left
out for simplicity)

SecRule ARGS:flags "[0-9]{1,2}"

SecRule ARGS:username "[0-9a-zA-Z]{,256}"
SecRule ARGS:password ".{,256}"

SecRule ARGS:SubmitCreds "Log.On"
SecRule ARGS:trusted "!(0]4)"
</LocationMatch>

Learning

The limitation of this model is that it requiresegeeknowledge of the application and a
considerable on going effort to maintain the ridé $he maintainer needs to define
such rules for each parameter and page in thecapipih. Essentially the rules have to
follow closely the application and every change tire application requires a
modification to the rule set as well.

In order to reduce the effort required, differeeirhing mechanisms have been
implemented. In a session based learning apprd@atules are dynamically created
based on previous transactions in the session.ifgpdlg, based on forms returned
by the web server the WAF generates validationsride input submitted using this
form by a user, validating field existence, lengthd special attributes such as
"hidden" or "read-only". Other dynamic validationles include rules limiting the
allowed URLs only to those appearing in links iryjous pages and rules limiting
cookie values. However, this approach is limiteacsithe information sent by the
server does not convey all the information requiedenerate a rule. For example,
the type of a parameter is not available. Furtheemthis method became nearly
obsolete with the major shift to client side sdrigt interactive web front ends such
as AJAX [find] and web services. In all these teabgies the client sends requests
that are not based on previous server responseseonard to determine from the
responses.

More recently anomaly based learning approach B suggested. In anomaly based
approach an input validation profile is created darapplication based on observing
real usage traffic and determining normal usagtepat. As with most anomaly based
detection techniques, the key challenges are difteating between attacks and non
malicious abnormal traffic, not including in therm@al usage profile information
derived from attacks and compensating for time daseiability in the usage profile.

Differentiating attack traffic from non maliciousm@ormal traffic is a major challenge
for monitoring systems, but is less severe for gutidn only systems as many non
attack abnormal requests can be blocked as theydwmi generate useful results.
The problem can be further reduced by using a texteenomaly only as an indicator
and determining an attack only based on multiptécettors, both anomaly based and
other.

2.3 Negative security model

A negative security model (or misuse based detectobased on a set of rules that
detect attacks rather than allow only valid traffibie Core Rule Set discussed in this
document is a negative security model rule set.

It is important to note that the differentiationtlveen negative and positive security
models is subjective and reflects how tight theusgc envelope around the

application is. A good example would be limiting tbharacters allowed in an input.
Since the character set is a closed set, providinbite list of permitted characters is
actually similar to providing a black list of fodden characters including the
characters complementing th& group.

A negative security model is very common to IntoasDetection and Prevention

systems (IDPS). Therefore it is very important tolerstand what the differences are
between the negative security model provided byDd?S and the negative security
model provided by a WAF.

Robust HTTPand HTML parsing

A WAF employs an HTTP and HTML parser to analyze ithput stream. The parser
should be able to understand specific protocolufest including content encoding
such as chunked encoding or multipart/form-dataoéimg, request and response
compression and even XML payload.

In addition the parser must be as flexible as theérenment protected as many
headers and protocol elements are not used acga@iRFC [8,9] requirements. For
example, while the RFC requires a single space damiwhe method and the URI in
the HTTP request line, Apache allows any sequeticghitespace between them.
Another example is PHP unique use of paramete@HR leading and trailing spaces
are removed from parameter names.

"ModSecurity Core Rule Set": Generic Detection ob&ks against Web Applications 5

In a proxy deployment a stricter parsing may beeptable, but if the WAF is
deployed in any way in which only a copy of theadimispected, the WAF has to be at
least as flexible as the web server in order tegreevasion. IDPS systems that fail
to do so can be easily evaded by attackers.

Protocol Analysis

Based on the parsed info, a WAF must break up thERHstream into logical entities
that can be inspected, such as headers, pararaetnsploaded files. Each element
will be inspected separately not just for its camtéut also for its length and count.

In addition a WAF must correctly divide the netwatkeam when keep-alive HTTP
connections are used to unique request and repliescorrectly match requests and
replies.

In proxy deployment, a WAF or IDPS failing to matcbrrect request and response
data may be attacked using HTTP response spliffidy attacks or HTTP request
smuggling attacks [11]. In a passive out of linedmothe WAF or IDPS may be
easily circumvented.

Anti Evasion features:

Modern protocols such as HTTP and HTML allow thensainformation to be
presented in multiple ways. As a result signatusseld detection of attacks must
inspect the attack vector in any form it may beAttackers evade detection systems
by using a less common presentation of the attatkov. Some common evasion
techniques include using different character ermagalifor the attack vector or using
none canonized path names. In order to prevenimvasWAF would transform the
request to some normalized form before inspection.

While modern IDPS systems may support anti-evatohniques, those are limited
to well defined parts of the request such as thé BRNVAF can selectively employ
normalization functions for different input fieldsr each inspection performed. For
example, while an IDPS would normalize the URI, &R\tan normalize an HTML
form field that accepts path names as input.

RulesInstead of Signatures

As the tests employed by a WAF are more complexgaitnot rely solely on
signatures and requires a more robust rules largteadefine the tests. For example,
the following features exist in ModSecurity rulesguage [12]:

= QOperators and logical expressions — a WAF can clechknput field for
attributed other than its content, such as its sizeharacter distribution.
Additionally a WAF can combine such atoms to createre complex
conditions using logical operators. For examplaVAF may inspect if a

field length is too long only for a specific valuf another field, or
alternatively check if two different fields are etypp

= Selectable anti-evasion transformation functiorss-discussed above, each
rule can employ specific transformation function.

= Variables, sessions & state management — sincgrtitecols inspected keep
state, the rules language needs to include vagaBlgch variable can persist
for a single transaction, for the life of a session globally. Using such
variables enables the WAF to aggregate informagiat therefore detect an
attack based on multiple indications during the Bpan of transaction or a
session. Attacks that require such mechanisms tecdare brute force
attacks and application layer denial of servicackis.

= Control structures — a WAF rules language may ohelgontrol structures
such as conditional execution. Such structureslerthie WAF to perform
different rules based on transaction content. lanmple, if the transaction
payload is XML, an entirely different set of rulesy be used.

3. ModSecurity Core Rule Set

The ModSecurity Core Rule Set is a negative secuulke set for web application

firewalls distributed as an open source projectean@PL. It is probably the only

comprehensive rule set available in an open sofmoe or its type and therefore

provides an important opportunity to examine tifeaiveness of a negative security
model for web application protection.

The core rule set is available at http://www.modsitg.org/projects/rules/index.html

While the Core Rule Set may be translatable torotheh application firewalls, it
does draw a lot of its power from ModSecurity. Sfieally, ModSecurity robust
rules language, granular parsing and wealth of@rgsion transformation functions
are used by the Core Rule Set.

The benefitsand challenges of being Open Sour ce

A negative security rule set has some major adgastand disadvantages from being
an open source project. On the positive side, ihaavily tested both for false
positives and false negatives by a large open souser base. Actually each such
report, once solved, is added to the rule set ss@gre test so that future changes
would not create the same false alert. This is @ajp¢ important due to the
difference between the RFC specifications of thiéeint protocols and the real
world implementation.

"ModSecurity Core Rule Set": Generic Detection ob&ks against Web Applications 7

On the other hand an open source rule set canddgzad by hackers in order to find

vulnerabilities. So just like open source softwatdnerabilities are more often found

in open rule sets. As a result, only a well maimgdi open source project can benefit
from the security advantages of being an open soprgject. As the core rule set is
backed by a commercial company it enjoys this benef

4. Application Layer Signatures

The most important security mechanism employechkyGore Rule Set is signatures,
just like its IDPS counterparts. In this sectionwi# examine the difference between
IDPS signatures and the Core Rule Set signatures.

4.1 Casestudy: or 1=1

The attack vector or 1913] is a classic example of an SQL injection @ktaector. It

is used to force SQL queries to return true vaka. example, this attack vector is
used to bypass login forms even when user nameasgivord are not known. As a
result, it is often used as a signature in IDP$esys to discover SQL injection.

Unfortunately, this signature can be easily evadisihg any of the following attack
vectors[14]:

= or 1%3D1- in this case the equal sign is encoded using eiftloding.

= 0r%091 =1- the expression accepts any number of spacesyoother
white space character such as horizontal tab betary of its tokens.

= or /*/ 1 /* this is a comment */ = 1~ inline comments (supported by
MySQL can be added between any of the tokens tdech@PS.

All these vectors can be detected using a robugtilae expression and proper
transformation functions, for example /or\s+1=\d4Jillsing Snort regular expression
syntax in which the U modifier implied URI decodiagd path normalization. In this
case the transformation functions should also tela function to remove the
comments. Alternatively the regular expression dam enhanced to remove
comments.

But an attacker does not need to use the abovessipn at all. As the goal of the
injection is to produce a true value, any exprassian be sufficient including 2>1
Actually the injection true value does no have ® &n expression: any value
interpreted as true will work, including constardéfferent databases accept different
values as constants. MS-Access for example wilepicd, "1" and "a89" as true
values so the injection string can simple be ®"a8

If the injection requires a string, the combinatiminthe keyword orand the single
quote might be sufficient as signature: or\sét this is signature is prone to false
positives and would not work in cases where theciaid true value can be a number.
As we can see there is no simple, catch all gesaitature to detect such attacks.

4.2 Reference | DPSsignatures

In order to analyze generic application layer sigres, we need to be familiar with
standard network based signatures. A case stuthjeieding edge" snort signature for
Bugtraqg vulnerability #21799. This vulnerability the Cacti open source graphing
software was picked quite at random.

The exploit references on Bugtraq vulnerabilitieshéve is [15]:

[cacti/cmd.php?1+1111)/**/UNION/**/SELECT/**/2,0,1, 1,127.0.0
.1,null,1,null,null,161,500, proc,null,1,300,0, Is -la >
Jrra/suntzu.log,null,null/**/FROM/**/host/*+11111

And the signature is [16]:

alert tcp SEXTERNAL_NET any -> $HTTP_SERVERS $SHTTP_ PORTS

(
msg:"BLEEDING-EDGE WEB Cacti cmd.php Remote Arbitr ary
SQL Command Execution Attempt"; flow:to_server,esta blished;

uricontent:"/cmd.php?"; nocase;

uricontent:"UNION"; nocase;

uricontent:"SELECT"; nocase;

reference:cve,CVE-2006-6799; reference:bugtraq,217 99;
classtype: web-application-attack; sid:2003334; re v:l;

)

While snort has some anti-evasion techniques ssgchage insensitivity and URI
decoding, this signature still falls short of dé¢ireg an exploit of the vulnerability. It
is gears only towards detecting the specific attee&tor shown above. Any other
exploit such as blind SQL injection would not beet¢ed. It also searches for the
keywords only in the request line, while many depehent environments would
allow for parameters to be provided both in the P@8d GET payload. Additionally
this signature is prone to false positives as lsetact and union are common English
words and since the signature do not require an wlelimiters the signature will
also be satisfied by the words "Selection" and 'HRenl'. In many cases such a
signature has to be turned off.

4.3 Application Layer Signatures characteristics

A generic application layer signature is still ldhsn detecting text patterns in the
payload inspected. Unfortunately, as shown eanli@st patterns are not distinctive
enough and may cause false positives:

"ModSecurity Core Rule Set": Generic Detection ob&ks against Web Applications 9

= xp_cmdshell — this MS-SQL function is a strong egtoindicator of SQL
injection by itself.

= “<" single quote — Some characters are very irtdieaof attacks such as
SQL injection or XSS, but are perfectly acceptabléree text, to quote, or
as an apostrophe.

= select, union — are examples of SQL keywords thatadso valid English
words.

In order to achieve precise attack detection usirgh patterns, we need to aggregate
multiple indicators. Some aggregation functiong tizan be used are:

= Avery strong indicator by itself - xp_cmdshell retaar.
= A sequence of indicators: union select, seledbp.... 1.

= Amount of indicators: script, cookie and documeppearing in the same
input field, with no order or distance limitations.

= A sequence of indicators over multiple requestsiftbe same source.

4.4 A Generic Signature example

The following is the Core Rule Set signature faledéng SQL injection, for clarity it
is abbreviated. The regular expression used is Egue to optimization done to
enhance regular expression matching performance.signature employes different
techniques in order to detect more attacks:

= A large number of SQL injection patterns are sedmh These patterns
include both very strong keywords as well as segeerof weaker SQL
keywords.

= All patterns use word boundaries, if applicablesgiduce false positives.

= The patterns are searched in all input fields #vatnot known to generate
false positives, including POST and GET parametatsHTTP headers.

= Transformation function are used to ensure thatemcoding or SQL
comments evasion technique can bypass the signatiah.

SecRule REQUEST_FILENAME|ARGS|ARGS_NAMES]
REQUEST HEADERS|!IREQUEST HEADERS:Referer \

"(?:\b(?:(?:s(?:elect\b(?:.{1,100}?\b(?:(?:length
|count|top)\b.{1,100}?\bfrom|from\b.{1,100}?\bwhere)| *2\b(?

:d(?:ump\b.”\bfrom|ata_type)|(?:to_(?:numbe|cha)|in st)n)|p_
(?:(?: addextendedpro|sq|exe)c|(’> oacreat|prepar)e|e xecute(?:
sqgl)?|makewebtask)|gl_(?:...\

“capture,log,deny,t:replaceComments,
t:urlDecodeUni, t:htmlEntityDecode, t:lowercase,msg I'SQL
Injection Attack. Matched signature
<%{TX.0}>',id:'950001',severity:'2"

45 Specific application layer signature

Application layer signatures are better than singdmatures also when applied to a
specific vulnerability. As noted above such a siguscheme is called virtual
patching. A virtual patch for Bugrtaq vulnerabil#21799 would be:

<LocationMatch :"/cmd.php$">
SecRule QUERY_STRING " ~\d\s]*$" “deny,log"
</LocationMatch>

Such a patch addresses the actual vulnerabilityinfiting the query string to digits
and spaces only, as intended by the program. ttush simpler and handles well
most evasion techniques. However, the limitationtref method is that it can be
employed only to a server running the vulnerablpliegtion as other applications
that have a page called "cmd.php" may break ifrilis is applied.

5. Protocol Validation

Apart from signatures, the Core Rule Set also a#disl the HTTP syntax as used in
the request and reply. Many generic web applicatidnerabilities such as Response
Splitting, Request Smuggling and Premature URL mgndil7] rely on inaccurate
analysis of HTTP by the server. This is also tarespecific vulnerabilities [18].

5.1 RFC & Real World protocol compliance

It is important to note that the Core Rule Set dusscheck that the request and reply
strictly adhere to the different HTTP RFCs. Whilkist can be done using
ModSecurity rules, it has two drawbacks: Many HTdlRnts and servers do not
follow the RFC and not every RFC violation has sggumplications making the test
a waste or resources.

Some protocol validations performed by the CoresFadt are:

= Ensure Content-length is different than 0 for anty dor none GET/HEAD
methods.

"ModSecurity Core Rule Set": Generic Detection ob&ks against Web Applications 11

= Detect non ASCII characters or encoding in healesluding headers such
as "referer" or "cookie" which may include such rattders)

= Valid use of headers (for example, content lengtiuimerical)

5.2 Policy Limitations

In addition some real world limitations can be aplto requests. Those limitations
are not in violation of the protocol definitions thtransactions that violate the
limitations cannot be used in real world applicasio These limitations can be
expanded the more specific the environment pradeisteblurring the line between
negative and positive security model. For examifleéhe application protected was
developed using PHP, extensions belonging to atbkeelopment environments such

as ASP can be rejected.

Such policy based limitations included in the CBrde Set are:
= Require headers such as Host, Accept or User-Agent.
= Check that the Host header is not an IP address.

= Restrict use of HTTP methods such as CONNECT, TRACBEBUG, and
if the application does not require them also WebDAethods.

= Restrict URL file extensions.

= Restrict content types for both requests and replie

6. Additional Detection M ethods

Some additional protection methods are used byCihre Rule Set are listed in the
following paragraphs.

Malicious Robots

The Core Rule Set detects malicious robots maialeld on information provided by

the client so a smart attacker can evade the redesly. The malicious robots

detection rules are included in the Core Rule 8eattluce nuisance by eliminating

wide spread unsophisticated attacks, which redueddad on the server and reduce
the alerts count. One of the annoying phenoment tttese techniques fight is

comments spam.

Among the techniques that can be used to block swatitious robots are:

= Detecting non browser attributes, such as requaestsing a User-Agent,
Host or accept header.

= Detecting non browser or known malicious User-Adezdders.
= Blocking a black list of IP addresses, known taubed by malicious robots.

Using the same techniques the Core Rule Set deesmttrity scanners and other,
positive robots such as search engines. As a sdefih while doing that, the Core
Rule Set also confuse security testing softwaré siscHTTPrint.

Trojansand Viruses

Trojans and virus infected files are a major probk hosting environments. In such
environments uploading files is usually allowed,iathenable hackers to use legal
uploading mechanism to upload Web Trojans and é&dble system.

Web Trojans are usually web servers' scripts writtePHP or ASP. Once uploaded,
they enable the hacker to execute system functionsa browser.

In order to detect Trojans and Viruses the CoreeRset employs the following
techniques:

= Inspecting uploaded files for Viruses using an exkAV such as ClamAV.
[19]

= Inspecting uploaded files for Trojans using signegu— this is important
since most AV software packages do not detect Wefars.

= Detecting access to Trojans, either using knownaiges of Trojan access
(for example, the x_key header is used by many sbimj@ns to authenticate
users) or by detecting generic output of systemctfans such as an
operating system type file listings.

Error conditions

The last line of defense is to detect errors pdintg different web development
systems. These errors are very useful to hackedsimany of them are embedded in a
normal response rather than in an official erroggpaccompanies by a 500 status
code. Therefore using signatures to detect andkbibe printing of such errors
severely limits the opportunities presented tockba

"ModSecurity Core Rule Set": Generic Detection ob&ks against Web Applications 13

7. FuturePlans

The Core Rule Set is a live and thriving projegpa#& from constant bug fixes and
false positive reduction, we plan to enhance firiatect from more and more attacks.
The following enhancements are planned for theréutu

= Session bases protection — by correlating betwegstted events in a single
session, attacks such as brute force passwordiggessd denial of service
can be detected and blocked.

= XML - Using ModSecurity basic XML parsing capabéi, the Core Rule
Set will offer basic protection for XML payloads ctu as soap. Such
protection will include initially schema validaticand contextual search for
the existing signatures in XML data.

8. Benchmarking the Core Rule Set

So how effective is the Core Rule Set in actuathytgcting web applications? This is
a very difficult question to answer and deservesdditional paper. Benchmarking a
rule set requires measuring two indicators: the odtfalse positives, i.e. how many
valid requests where blocked and the rate of fatsgatives, i.e. how many attacks
where not blocked by the rule set.

False Positives

In order test the Core Rule Set we used captues 6F traffic at approximately 30
unrelated web sites. We converted the capture ifif@srequests and reply pairs and
used a special testing script to play them throagModSecurity reverse proxy
application firewall running the Core Rule Set. Twipt ensured that each request
would cause the matching reply to be sent baclutiirahe proxy.

The main goal of this process was to test andhix@ore Rule Set, and we did find
out the after 8 web sites the number of false positives droppeamdtically.
However we learned that the majority of the renrarfalse positives stem from three
sources:

= While normal users never generate protocol viotegjcautomated programs
such as a site monitoring or mirroring programsmfiolate the HTTP
protocol. If a web site is using such systems, thewld generate false
positives. Such a false positive is usually reswlisg creating an exception
for the source IP of the violating system for thedfic violated rule.

= Applications that allow HTML editing, such as blogwiki systems, usually
breaks XSS detection rules. This is not really Befapositive as these
capabilities are a security risk. A specific wete shay be willing to endure
such a risk and exceptions are required to alloev HTML editing in
relevant pages.

= While user generated input usually does not geeefatse positives,
programmatic input such as parameter names mayaenilse positives.
The reason is that many attack vectors and theredtiack signatures are
also programming fragments. Since programmatic tinfsu constant,
exceptions can be easily created for it.

Fortunately all these issues can be resolved bingaddsmall numbers of exceptions.

False Negatives

Since the main goal of the Core Rule Set is toalateknown attacks rather than
known attacks, it is very difficult if not impos$ibto measure the false negative rate.

We do know that the Core Rule Set detects reatkstten both commercial and open
source installation. However, how many attacks doegss? Naively one may think
that using one of the available application segwg@ianners can help to determine the
rate of false negatives. The caveat of this appraadthat the results depend on the
application selected for testing and any rule set be optimized to protect any
known application tested by any specific scanner.

One approach to determining false negatives rate isse a random application or
applications for testing. This is left for a futuesearch.

References

1. The Web Application Firewall Evaluation Crite(\iWAFEC), Project of the Web
Application Security Consortium (WASC), Version 1January 14th 2006
http://www.webappsec.org/projects/wafec/,

2. ModSecurity, Version 2.1, released February2®0y7, http://www.modsecurity.org

3. GPL, GNU General Public License, Version 2,eJ1892,
http://www.gnu.org/copyleft/gpl.html

4. ModSecurity's Web Application Firewall LeadsDeployment Numbers But Lags In
Usability, The Forrester Wave™ Vendor Summary, Q@& by Michael Gavin,
http://www.forrester.com/Research/Document/Excérp#11,39714,00.html

5. SQL Injection Attacks by Example, Steve Frigain 1% 2005,
http://www.unixwiz.net/techtips/sql-injection.html

"ModSecurity Core Rule Set": Generic Detection ob&ks against Web Applications

15

6. AppShield: Next Generation Reverse Proxy for eu8eWeb Environment, 2002,
www.gradian.co.uk/Resource_Lib/Sanctum/Reverse%2 085 mdf

7. Anomaly Detection of Web-based Attacks, Chriseygkruegel & Giovanni Vigna,
Reliable Software Group, University of California,ng&aBarbara, October 2003,
http://www.cs.ucsb.edu/~vigna/publications/2003 eigel_vigna_ccs03.pdf

8. RFC 2616, Hypertext Transfer Protocol -- HTTP/1999
http://www.w3.org/Protocols/rfc2616/rfc2616.html

9. RFC By Category, Hypertext Transfer Protocol
http://www.fags.org/rfcs/np.htmI#HTTP

10. “Divide and Conquer”, HTTP Response Splitting,3/@ache, Poisoning Attacks, and
Related Topics,
Amit Klein, Director of Security and Research, SanctInc. , March, 2004
http:// www.packetstormsecurity.org/papers/genetsdtepaper_httpresponse.pdf

11. HTTP Request Smuggling, Chaim Linhart, Amit K]Jé&Ronen Heled And Steve Orrin,
A Whitepaper From Watchfire
http://www.cgisecurity.com/lib/HTTP-Request-Smugglipdf

12. ModSecurity Reference Manual, Version 2.1.Cebtgary 23, 2007)
http://www.modsecurity.org/documentation/modseguapache/2.1.0/modsecurity2-
apache-reference.html

13. SQL injection Basic Tutorial,
http://www.governmentsecurity.org/articles/SQLinjenBasicTutorial.php

14. SQL Injection Signatures Evasion, By Ofer Makpplication Defense Center Manager
and Amichai Shulman, Chief Technology Officer, ImgerApril 2004
http://www.imperva.com/application_defense_centhitev papers/sql_injection_signat
ures_evasion.html

15. Cacti CMD.PHP Remote Command Execution Vulnergbilit
http://www.securityfocus.com/bid/21799/exploit

16. Bleeding Edge Signatures for snort
http://www.bleedingsnort.com/bleeding-web.rules

17. IDS Evasion Techniques and Tactics, Kevin Tirivtay 7, 2002
http://www.securityfocus.com/infocus/1577

18. Apache HTTP Server Arbitrary HTTP Request Hea&ecurity Weakness
http://www.securityfocus.com/bid/19661/info

19. http://www.clamav.net/

This work is licensed under the Creative CommonslAttion-ShareAlike 2.5 License

