Deconstructing ColdFusion

LASCON
October 29,2010

VERACODE



I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACODE

Hi

Chris Eng

— Senior Director of Research at Veracode

— Responsible for incorporating security intelligence into Veracode's technology

Previously
— Technical Manager at Symantec (through acquisition)

— Tarh I MNiractA ~nA 1HA +41
— Technical Director and Consultant at @ k/S axke

— Security Researcher/Electrical Engineer at NSA

Industry Involvement

— Frequent speaker at security conferences (BlackHat, OWASP, RSA, etc.)

— Contributor to Common Weakness Enumeration (CWE), CWE/SANS Top 25
Most Dangerous Software Errors, WASC Security Statistics Project, and others

— Advisory board member for SOURCE Conferences (Boston and Barcelona)

— Developed @stake VWebProxy



I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACOIE

Motivations

" Few resources avallable on securing or testing ColdFusion apps

— ColdFusion 8 developer security guidelines from 2007/
http://www.adobe.com/devnet/coldfusion/articles/dev security/
coldfusion security cf8.pdf

— “Securing Applications” section of ColdFusion 9 developer guide is similar, almost
entirely about authentication methods
http://help.adobe.com/en US/ColdFusion/9.0/Developing/coldfusion 9 dev.pdf
— OWASP ColdFusion ESAPI started May 2009, abandoned (?) June 2009
http://code.google.com/p/owasp-esapi-coldfusion/source/list

— EUSec presentation from 2006 focused mostly on the infrastructure footprint and
deployment issues (admin interfaces, privilege levels, etc.)
http://eusecwest.com/esw06/esw06-davis.pdf

* We were developing ColdFusion support for our binary analysis service,
so we were doing the research anyway

* No platform O-days here; this is all about vulnerabilities in custom apps



=
VERACODE
Agenda

= ColdFusion Background and History

= Platform Architecture and CFML Crash Course

" Finding Vulnerabllities in ColdFusion Applications
= ColdFusion Behind the Curtain (if time permits)



ColdFusion Background

and History




I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACODE

ColdFusion History

= Originally released in 1995 by Allaire
— Motivation: make it easier to connect simple HTML pages to a database

— Inttially Windows only with built-in web server

= Migration to J2EE with ColdFusion 6 in 2002

— Everything compiled to Java classes before being run

— Bundled with JRun
m | atest version is ColdFusion 9 released in 2009

— Most recent features focus on integration with other technologies, e.g. Flash, Flex,
AIR, Exchange, MS Office, etc.



I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACODE

Historical Vulnerabilities

In the recent past
— CVE-2010-286|: Unauthenticated directory traversal in Administrative interface
— CVE-2009-3467 and CVE-2010-1293: Unspecified XSS vulnerabllities
— CVE-2009-1876: Unspecified double-encoded null character infoleak

Lots of XSS in sample apps, administrator Ul, error pages

= Source code disclosure (canonicalization issues, sample apps)

= Authorization vulnerabilities related to administrative Ul

Prior to ColdFusion 6 (Allaire/Macromedia days)
— Arbitrary file retrieval
— XOR used to encrypt passwords
— Predictable session identifiers (may have been sequential, IRC)

— Various DoS conditions and buffer overflows



I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACODE

Who Uses ColdFusion Anyway!?

" |ots of people, believe it or not. Let's start by asking Google. ..

ext:asp 1,1 10,000,000
ext:iaspx 1,320,000,000
ext:cfm 213,000,000
extjsp 556,000,000
ext:php 6,530,000,000
ext:pl 598,000,000
ext:py 8,210,000

extirrb 372,000



I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACODE

Who Uses ColdFusion Anyway!?

" “More than 770,000 developers at over 12,000 companies worldwide

rely on Adobe® ColdFusion® software to rapidly build and deploy
Internet applications. And with more than 125,000 ColdFusion servers

deployed, ColdFusion is one of the most widely adopted web
technologies in the industry.”

7~ _ '
Bank of America %2> Cltl & Smithsonian

N
\— verizon @aﬂsﬂw;@




I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACOIE

ColdFusion Prevalence by Vertical




Platform Architecture and
CFML Crash Course




I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACODE

CFML Building Blocks

= Pages
— Main entry points of a CF application
— Similar to an HTML page (or PHP, JSP, etc.) except using CFML tags

— .cfm extension

= Components

I (" +ﬁ;r\| i/*

N
Vil iLall

— Written entirely in CFML

— .cfc extension
= Functions (UDFs)
— Defined inside components or pages

— Called using CFINVOKE or inside a CFSCRIPT block/expression

— Can be exposed as an entry point inside components



VERACODE
CFML Page Lifecycle, Part |
" When a page Is requested, search Ref - o
' : ingex.cfm Application.cfc Y index.cfm
for (and execute) Application.cfc or | '
' ' . N
Application.cfm first T
. . . . Application.cfm v
= Application.cfm is a plain old CFML |
file, while Application.cfc defines o Y
l’\f\/\l/P IV\+/’\ "\I’\I’\II/’"’\"‘;/’\V\ M\ I/\V\+(‘ App“ca‘tion'd:c
HTOUURS ITTLOUD CllJlJIILCLLIUI I TVCIlILS l\‘l
. . v
= Common uses for this mechanism: e ,
pplication.cfm
— Login management .
. L v
— Centralized data validation ,
— Messing with session variables |
— Error handling Ap:Root
Application.cfc Y
\
v
App Root YN

Application.cfm



I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACODE

Inside Application.cfc

= onApplicationStart: application start (can access request variables)

= onApplicationEnd: application timeout/server shutdown

= onSessionStart: new session (can access request variables)

= onSessionEnd: session ends

= onRequestStart: called before every request (can access request variables)

= onRequest: called after onRequestStart code ends (can access request
variables)

= onRequestEnd: called after request has been processed (can access request
variables)

= onMissingTemplate: called when an unknown page has been requested (can
access request variables)

= onError: when an uncaught exception occurs (can access request variables
sometimes; check Event value)



VERACODE

CFML Page Lifecycle, Part 2

= A single page can include code
from many different locations

= Custom tags are similar to
local includes, but with
different dataflow behavior

DU o T o SO [ [ N P
— SCT_TOO~ IS5 KId Ol 1HKE

<cfinclude template="foo.cfm">

except that changes made to
variables are not visible in the
calling page

" There are also built-in tags for

interacting with remote HT TP,

FTP, LDAP, SMTP, and POP
servers

UDFs

from remote
.cfc files

Included

local .cfm
/—\ files

Request for

index.cfm

Local .cfm
files via

\\ custom tags
\ UDFs
from local

.cfcfiles

Servlet
JspContext

JSP Custom
Tag Libraries

Servlet
Methods
Bridges
.NET
Assemblies

Custom C++
or Java tags
(CFX API)



VERACODE

Variables are Dynamically Scoped

" Silos of global variables named “scopes™ can be confusing

" Variable accesses can be fully-qualified (prefixed with scope name) or
not qualified at all

<cfoutput>#foo#</cfoutput>
<cfoutput>#URL. foo#</cfoutput>

of a query row or loop iteration, e.g.

<cfquery name="qry" datasource="myDataSource">
SELECT col1, col2, col3 FROM myTable
</cfquery>
<cfoutput query="qry">#col1#, #col2#, #col3#</cfoutput>
<cfoutput query="qry">#qry.col1#, #qgry.col2#, #qgry.col3#</cfoutput>

= Qutput without iteration is also possible:
<cfoutput> #qgry.coll1#, #qgry.col2#, #qgry.col3# </cfoutput>



VERACODE

Variable Scopes

Variables
Application
Arguments
Attributes
Caller

Request

This
ThisTag
URL
Form
Cookie
CGl
Session

Client

the variable binding stack local to the current page

global to every page in an app; set in application.cfc

arguments to a function (may be tainted if called by a remote UDF)
used to pass data to .cfm custom tag pages/threads

used within custom tags; reference to the calling page's Variables scope

persistent across all code for the lifetime of the request; useful within custom tags
and cfincluded pages

struct/component “member variables”

analogous to Request scope for custom tag pages
parameters present in HT TP query string
parameters present in HT TP POST body

HT TP request cookies

CGl variables, some server-defined and some tainted
persistent across a single site visit

client-specific persistent storage; outlasts session variables



I EEERERREREEEEESSSSSSC=SSn———————
VERACODE
Variable “Types” in ColdFusion

* The CF type system hasn’t changed significantly since the 90s
" |mplicit conversions to/from strings are the norm

" |nstead of type checks, validation often done with pattern matches:
— CFPARAM and CFARGUMENT “type” attributes

» <cfparam name="phoneno” type="telephone”> will throw an exception if “phoneno”
is set and is not formatted as a standard US/NANPA phone number

= Types “boolean”, “creditcard”, “date”, “time", “eurodate”, “eurotime”, “email”, “float’,
“numeric’, “guid”, “integer”, “range”, “regex”, “ssn”, “telephone”, "URL", "uuid”, “usdate”,
“variablename”, “xml”, “zipcode” all check the string representation of the variable against
regexes

= | imited type checks are possible: “array”, “query”, “struct”, and “string”
= Numerous opaque types reused among contexts

— Example: queries are used for database queries, directory iteration, Idap queries,
http/ftp requests, and others



VERACODE

CF Expressions

= Automatic interpolation with #-expressions inside cfoutput and
attributes:
— <cfoutput>#URL. foo#</cfoutput>

— <cfloop query = "MyQuery"” startRow = "#Start#"” endRow = "#End#">
<cfoutput>#MyQuery.MyColName#</cfoutput><br>
</cfloop>

= Dynamic scoping can hinder analysis
— <cfset foo="bar"> vs. <cfset "#foo#"="#bar#">

— SetVariable("foo"”, "bar") vs. SetVariable(foo, bar)

= Dynamic evaluation functions

— Evaluate() and PrecisionEvaluate()

— 1IFQ)

— DE() — used in conjunction with the other two



Finding Vulnerabilities in

ColdFusion Applications




I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACODE

Spot the Tainted Data

= URLany_variable

= FORM.any_variable

= COOKIE.any_variable
= FLASH.any_variable

m CGlsome_ variables

— e.g. PATH_INFO, QUERY_STRING, CONTENT_TYPE, CONTENT_LENGTH,
HTTP_REFERER, HTTP_USER_AGENT, etc.

— More on this later

= SESSION.some_variables

— Depends on application logic

= CLIENT.any_variable

— Only when client variables are enabled and storage is cookie-based

= CFFUNCTION arguments, when access="remote"



I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACOIE

XSS? No Problem, scriptProtect to the Rescue!

= Using scriptProtect attribute

— Replaces blacklisted tags such as <script>, <object>, etc. with <lInvalidTag> when
rendering user-supplied input

— Doesn't block injection, aside from the most basic attack strings

= Example

— <cfapplication scriptProtect="all">
<cfoutput>You typed #URL.foo#</cfoutput>

— Requesting page with /foo=<script=alert("foo")</script> will return
You typed <InvalidTag>alert("foo")</script>
" Trivial to circumvent

— One of many possibilities: requesting page with
foo=<img src="http://L.imgur.com/4Vp9N.jpg" onload="alert(‘foo")">
will happily execute the alert() call
= Other regexes can be added to the blacklist, but it's still a blacklist (look
for neo-security.xml if you insist)



I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACOIE

| Also Have These Great Encoding Functions

» HTMLEditFormat() and HTMLCodeFormat() don't perform sufficient
HTML encoding

— They only encode <, >, " and &

— Ineffective for unquoted or single-quoted tag attributes, or within script blocks
® <img #HTMLEditFormat (URL.foo)#>
" <img alt="#HTMLEditFormat(URL.foo)#'>
m <script>#HTMLEditFormat (URL.foo)#</script>
m <script>var x='#HTMLEditFormat(URL.foo)#';</script>
= etc

— XMLFormat() encodes single quotes, but still won't prevent XSS in all situations,
e.g. Inside Javascript or CSS blocks

* Contextual encoding! Have to roll your own...



I EEERERREREEEEESSSSSSC=SSn———————
VERACODE
No Problem, I'll Just Whitelist!

= This should work, right?

— <cfoutput>#int (URL.count)#</cfoutput>

— <cfset safenum=NumberFormat (FORM.bar)>

— <cfoutput>#JavaCast("boolean”, URL.booly)#</cfoutput>
* Default error page

— scriptProtect is enabled on the default error page, but we already saw how
(in)effective that is

The following information is meant for the website developer for debugging purposes.

Error Occurred While Processing Request

The value foo cannot be converted to a number.

Resources:

#* Enable Robust Exception Information to provide greater detail about the source
of errors. In the Administrator, click Debugging & Logging > Debug Output
Settings, and select the Robust Exception Information option.

#* (Check the ColdFusion documentation to verify that you are using the correct
syntax.

® Search the Knowledge Base to find a solution to your problem.

Browser Mozillaf5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.2.3)
Gecko/20100401 Firefox/3.6.3 {.NET CLR 3.5.30729)

Remate

Address 10.0.5.220

Referrer
Date/Time 24-May-10 02:36 PM




I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACOIE

What If | Use a Custom Error Page!

= Avoid XSS risks in the default error page by defining your own custom
error page
<cferror template="errorhandler.cfm” type="request”>

Don't use #error.diagnostics# or #error.message# in your error page!

= Exception handling also works

<cftry>
<cfoutput>#int (URL.count)#</cfoutput>
<cfcatch>Exception caught!</cfcatch>
</cftry>

Don't output #cfcatch.message# in your catch block without properly encoding it first!



I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACOIE

Common SQL Injection Mistakes

= Using CFQUERY without CFQUERYPARAM
(also CFSTOREDPROC without CFPROCPARAM)

<cfquery name="getContent” dataSource="myData">
SELECT * FROM pages WHERE pagelD = #Page_ID# OR
title = '"#Title_Search#'</cfquery>

= #Title_Search# is not injectable; CF will automatically escape single
quotes for expressions inside the CFQUERY tag

" #Page_|D# is still injectable because it's not quoted
= Using CFQUERYPARAM

<cfquery name="getContent” dataSource="myData">
SELECT * FROM pages WHERE pagelD =
<cfqueryparam value="#Page_ID#" cfsqltype="cf_sql_integer"></cfquery>

(For unknown reasons, cfsgltype is an optional attribute)



I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACODE

Other OWASP Top Ten Vulnerabilities

* We won't waste time rehashing all of the common web vulnerabilities

— Of course you can have CSRF, insecure cryptographic storage, broken
authentication/authorization, etc. in a ColdFusion app

— Nothing unique enough to warrant discussion here

" Here are some tags to watch out for; it should be obvious why they are
dangerous if not properly restricted
— <cffile>
— <cfdirectory>
— <cfexecute>
— <cfregistry>
— <cfobject>

— <cfinclude>



I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACOIE

Directly Invoking UDFs

= Fvery method in a .cfc file Iis a potential entry point, e.g.
http://example.com/foo.cfc!method=xyzzy&arga=vala&argb=valb

= This URL will invoke method xyzzy on an anonymous instance of
component foo.cfc, with arguments arga="vala" and argb="valb™ (also
valid with POST variables, although method must be passed in the

query string)
— If method doesn't exist, onMissingMethod is called

— If method isn't specified, then the request gets redirected to
CFIDE/componentutils/cfcexplorer.cfc

— Rules for application.cfc and application.cfm still apply
" |n a source code review, look for sensitive functionality implemented as
UDFs, with the access attribute set to “remote”

e.g. <cffunction name="ListCategories"” access="remote” returntype="query">



I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACODE

Search Order for Unscoped Variables

" |f you use a variable name without a scope prefix, ColdFusion checks
the scopes in the following order to find the variable:

|. Local (function-local, UDFs and CFCs only) /. CGl

2. Arguments 8. Cffile

3. Thread local (inside threads only) 9. URL

A Diinry (At 2 Friia ceARe Aariahlac 1n Aliary lAaAanc) | C~iminn
T. \LJUCI }’ \I 10L a LI Uc DLUlJC vdal 1avics 111 L,lUCI }’ IUUlJD} 11U, T Ol
5. Thread | I. Cookie
6. Variables 1 2. Client

= For example, in applications with sloppy variable naming, you can almost
always override POST (Form) parameters with GET (URL) parameters



VERACODE

Exploiting Unscoped Variables

Consider this logic to process a user login (yes, it's contrived)

<cfif AuthenticateUser(FORM.username, FORM.password) and
IsAdministrator(FORM.username)>

<cfset Client.admin = "true”">
<cfelse>

<cfset Client.admin = "false">
</cfif>

Other pages check whether the admin variable is true before
performing restricted actions

<cfif admin eq "true”>
Put privileged functionality here!
<cfelse>

Sorry, only admins can access this!
</cfif>

Putting Zadmin=true in the URL will bypass this check because URL
variables precede Client variables in the search order

Compare reads/writes of variables to identify scoping inconsistencies



VERACOIDE
Exploiting User-Supplied Variable Scope

= Code similar to the following
<cfloop item="x" collection="#URL#">
<cfscript>SetVariable(x, Evaluate("URL." & x));</cfscript>
</cfloop>

<cfif Client.username eq "admin”>
Put privileged functionality here!
<cfelse>

Sorry, only admins can access this!
</cfif>

" Attack by putting /client.username=admin in the URL

= Beware of any variable assignments with user-supplied LHS!
e.g. <cfset "#URL.varname#" = "#URL.varvalue#">

Credit: Martin Holst Swende (http://swende.se) via emall



I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACODE

Undefined Variables

= Similarly, ensure that variables are always inrtialized properly

= CFPARAM's “default”™ attribute only sets a variable if it's not set already;
use CFSET or an assignment inside cfscript

= Assume undefined, unqualified variables are filled with request data!

" |[t's common to see code like:

<cfparam name="pagenum” default="1">
<cfoutput>

Now showing page #pagenumi#.
</cfoutput>

= This Is exploitable; GET and POST variables will override pagenum



I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACODE

Environment Variables

" [ egitimate variables in the CGl scope can be manipulated and in some
cases overridden via HT TP headers

" For example:

The CF expression #CGILHTTP_HOST# will contain “example.com”

The CF expression #CGILHTTP_HOST# will contain “evil.com”

= You can also override #CGIL.SERVER _SOFTWARE#,
#HCGILPATH_INFO#, #CGILWEB_SERVER_API#, and many others

" Be particularly careful with #CGLAUTH_USER#



I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACODE

Persistence Issues

* Client scope variables can be configured in Application.cfm in the
CFAPPLICATION tag (attribute “clientmanagement™) or
this.clientmanagement in Application.cfc

— Keyed to browser via CFTOKEN/CFID cookies; actual variable storage may be
client-side (other cookies) or server-side (in a database or the Windows registry)

— All of these cookies persist by default, so watch for cookie theft/stuffing attacks

* When client scope Is enabled, tampering is possible if cookie storage is

enabled (“clientStorage” attribute/variable)
e.g. <cfapplication clientManagement="yes"” clientStorage="Cookie">

— No encryption or MAC; everything is in plain text



ColdFusion Behind the Curtain




I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACODE

Proprietary Classfile Format

= CF can compile pages/components to sets of Java classes using the
cfcompile utility

= One class per page plus one for every UDF

= All class generated for a single CFM/CFC file are placed in one file,
concatenated; a custom ClassLoader is used by CF to load them up

= Names of the resulting concatenated files are identical to those of the
source files

= Separately, ColdFusion Administrator can be used to bundle a directory
as an EAR/WAR



I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACOIE

A Way to Slice Them: cfexplode
" Free, open-source Java utility written by Brandon Creighton at

Veracode, available from Google Code:
http://code.google.com/p/cfexplode/

" Splits concatenated classfiles into many; can accept individual compiled
CFC/CFM files or full WAR/E R/JAR zIp archives

% Java Jal \,'FCAplOd r outdir inde»
% ls -1 outdir

total 40

-rw-r--r-- 1 cstone cstone 3534 2010-07-16 15:23 index.cfm.@.class
-rw-r--r-- 1 cstone cstone 2095 2010-07-16 15:23 index.cfm.3534.class

-rw-r--r-- 1 cstone cstone 31234 2010-07-16 15:23 index.cfm.5629.class

aA
. Jda

e

" |ndividual classes easily analyzable (even with the free JAD and |D-GUI)



I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACODE

Page/Component/Function Java Classes

= CFM/CFC: main point of entry is CFPage.runPage()

— Other methods called beforehand set up data: variable bindings
(bindPageVariables()), function names (registerUDFs()), data sources

= <cffunction>: main point of entry is UDFMethod.runFunction()
— Argument validation is done by the runtime; any types specified in <cfargument>
tags are translated into a static Map instance named “metaData”
= CfJspPage (base class).pageContext is a plain old JspContext, so
pageContext.getOut() returns a JspVWriter; this is used to do the bulk
of the output

— getOut() also used for things that aren't actually output to the screen, such as
database queries

= Occaslionally, parts of the body are factored out of runPage into
separate private methods named factorO(), factor| (), factor2()..



VERACODE
CF Variables in Java: Static References
= Static references, usually used * When compliled:
ﬂor'k)caJt)hwdhﬂgs protected final Object runPage()
<cfset vfoo="value 1"> {
<cfparam name="pbar" /1 , ,
defaultznvalue2n> VFOO.Set( Value 1 );
<html> _whitespace(out, "\n");
<cfoutput> checkSimpleParameter (PBAR,
vfoo: #vfoo# pbar: #pbar# valuest);
</cfoutput> out.write(”"\n\n<html>\n ");
</html> 2
out.write(”"\n vfoo: ");

out.write(Cast._String(
_autoscalarize(VF00)));

out.write(” pbar: ");

out.write(Cast._String(
_autoscalarize(PBAR)));

_whitespace(out, "\n "Y;

/] ..

}



o
VERACOIDE

CF Variables in Java: Dynamic References

* Dynamic references, explicitly-scoped variables

<html>
<cfoutput>
#url.quux#
</cfoutput>
</html>

= When compiled:

protected final Object runPage()
{
/..
out.write("<html>\n ")
_whitespace(out, "\n ");
out.write(Cast._String(
_resolveAndAutoscalarize("URL", _new String[] { "QUUX” }))
);
/..



I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACODE

WAR/Application Structure

= CFMs/CFCs handled by different Servlets (CfmServlet and CFCServlet,
respectively)

" These locate the class(es) necessary based on URL and parameters,
then invoke their runPage()/runfFunction() methods

= Chain of coldfusion.filter.FusionFilter classes (not related to J2EE Servlet
filters); these handle client-scope propagation
= Even if the "Include CF Administrator’ option is unchecked, many
pages/components inside the CFIDE/ directory are included inside
every WAR
— Mapped by default

— Access may not be password-protected; easily disabled by a change to
neo-security.xml (see http://kb2.adobe.com/cps/404/kb404/99.html)




I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACODE

WAR Structure: Other Servlets

= *jsp: JSPLicenseServlet; passthrough for jrun.sp.JSPServiet

" /flex2gateway/*, /flashservices/gateway/*, /CFFormGateway/*:
FLEX/plain Flash Remoting gateways for CFC methods
— /flashservices/gateway/path | .path2.component = path | /path2/component.cfc
— Gateways can be used in ActionScript NetServices.createGatewayConnection()
— llead intarnallh, by <~farid>S anA
USCU 1TILCT | ICLIIy Uy \Llél Iu-— al i
automatically

= GraphServlet: handles /CFHIDE/GraphData.cfm (not actually a cfm file);
used by the cfchart tag.

= CFFileServlet: handles /CFFileServlet/*, and serves up files from a cache
directory; used by <cfimage>

= /cfform-internal/*: FLEX FileManagerServlet; serves a handful of
dynamically-generated images and Js files

* /MWSRPProducer/*: WSRP portlet management Axis service



Final Thoughts




I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACODE

Conclusions

= ColdFusion designed to be simple for “developers” to use, but it's
actually very complicated underneath

" |[t's easy to make coding mistakes (or overlook vulnerabilities during
code review) if you don't understand ColdFusion internals
— Request lifecycle
— Error handling
— Variable scopes and precedence
= |ike many web application platforms, ColdFusion has a bunch of

“features’ that are useful for debugging but also open up holes

» ColdFusion-generated Java classes are pretty ugly; use cfexplode to help
reverse engineer them

" The attack surface is huge by default; strip out unnecessary components
before deploying



I EEEEEERCRREERRRRRSEESESE=S=—S————
VERACOIE

More Resources

= Whitepapers, webcasts, and other educational resources

— http://veracode.com/resources

" Veracode ZeroDay Labs Blog

— http://veracode.com/blog

* Download the cfexplode tool
— http://code.google.com/p/cfexplode/

= Contact info
— Emall: ceng@veracode.com

— Twitter: @chriseng
— Phone: 781.425.6040



