
Exploiting Deserialization Vulnerabilities in
PHP Applications

Andrew Kramer

• Andrew Kramer
− andrew@jmpesp.org

● M.S. and B.S. from DSU

• Currently Comp-Sci Faculty at DSU

• Worked at a National Lab

• Worked in Pentesting

• Hacker hobbyist :)

mailto:andrew@jmpesp.org

● PHP hacking in the good ol’ days!
− SQL injection
− File inclusion
− Command injection

● This has gotten harder :(
− SQL prepared statements
− PHP patched the null-byte (%00) injection trick

− allow_url_include off by default
− Web application firewalls
− Coding practices are generally improving

● More exotic PHP vulnerabilities
− Type juggling issues
− preg_replace() with “e” modifier
− Deserialization of user supplied data

● FYI: This is NOT unique to PHP
− PHP: serialize() / unserialize()

− Python: pickle.dump() / pickle.load()

− Ruby: Marshal.dump() / Marshal.load()

− Java: Serializable
− Etc...

● (de)serialization: The process of
converting a complex object or data
structure to/from a plain text stream

● Commonly used for...
− Storing objects in a database or textfile
− Storing complex things in session data
− Passing objects between systems
− Etc

● The problem with unserialize:
− unserialize() can instantiate objects
− Objects can “do things”, i.e. execute code.

● What if we control the input?

● Problem 1: We can’t define functions in
the serialized object, only data. :(

● Solution: Lots of classes (probably)
already exist. They have functions!
− Maybe there’s one that writes to a file?
− Or executes a SQL statement?
− Or executes code?

● Problem 2: If we find one, how do we get
the function(s) to execute?
− Unserializing sets the “$cmd”

− But DOESN’T actually call OhNo()

● Solution: PHP implements several “magic
methods” that are automatically called.
− __wakeup(), __destruct(), etc...
− Do any of those lead to interesting code?
−  
 
 
 
 
 
 
 
https://secure.php.net/manual/en/language.oop5.magic.php

https://secure.php.net/manual/en/language.oop5.magic.php

● Realistically, probably like...

● Case study:
− Invision Power Board
− Version 3.3.4
− User data passed to unserialize() via the cookie

value “member_id”. Exploitable using the
“db_driver_mysql” class.

− https://www.exploit-db.com/exploits/22398/

https://www.exploit-db.com/exploits/22398/

● The vulnerability…
− /admin/sources/base/core.php
− IPSCookie::get()

● The abusable class:
− (Dramatization)

● Demo time!
− DakotaCon 2017 CTF - “ClassyChat”
− Live site: http://classychat.hostbin.org/
− Code: https://jmpesp.org/public/classychat.zip

http://classychat.hostbin.org/
https://jmpesp.org/public/classychat.zip

● Questions?
● Comments?

● Contact: andrew@jmpesp.org

mailto:andrew@jmpesp.org

