
Tool‐basierte Web Security

Matthias Rohr
20. März 2014

About Me

• Matthias Rohr
• CISSP, CSSLP, CISM, CCSK
• Application Security seit knapp 10 Jahren
• Autor sowie Berater und Geschäftsführer bei der Secodis

GmbH in Hamburg
• Schwerpunkte:

– Secure Development Lifecycle (SDL)
– Tool‐basierte Software‐Sicherheitsanalysen

Zunächst ein wenig FUD* …
* = Fear, Uncertainty & Doubt

„Cyber‐Angriffe“

“The cyber threat is one oft he most serious
economic and national security challenges

we face as a nation“
Obama, 29. Mai 2009

In einer Studie gaben 93% der größeren und 76%
der kleinere Unternehmen in UK an, in 2011 von
einem Cyber‐Angriff betroffen gewesen zu sein
Information security breaches survey –

Technical report, April 2012, PwC

„Cyber‐Angriffe“ =
Angriffe auf Webanwendungen

Quelle: UK Security Breach Invest igat ions Report 2010

Webanwendungen
(86%)

Infrastruktur
(14%)

OWASP Top 10

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Angriffe

1999‐2011
http://projects.webappsec.org/w/page/13246995/Web‐Hacking‐Incident‐Database

Schwachstellen

1999‐2011
http://projects.webappsec.org/w/page/13246995/Web‐Hacking‐Incident‐Database

Schäden durch Angriffe auf
Webanwendungen

1999‐2011
http://projects.webappsec.org/w/page/13246995/Web‐Hacking‐Incident‐Database

Bugs vs. Sicherheitsprobleme

Bugs Sicherheits-
Probleme

Anforderungen
Implementierung

(handwerkliche Fehler)

Quelle: Joe Jarzombek, Software‐Assurance: Enabling Enterprise Resilience through Security
Automation and Software Supply Chaining Risk Management

Tools ...

Code vs. Application Layer

Schwachstellen in der laufenden Anwendung
Manuell: Pentest

Autom: Dynamic App. Security Testing (DAST)

Schwachstellen auf Codeebene
Manuell: Code Review

Autom: Static App. Security Testing (SAST)

Session Mgmt /
CSRF,
Unsichere
Einbindung,
Logikfehler,
Anti-
Automatisierung,
…

Race Conditions
Buffer Overflows
Backdoors,
Unsichere APIs,
Anbindung
Backend,
…

XSS,
SQL Injection,
Datenval. allg.
Authentifizierung,
Zugriffsschutz,
Kryptographie,
Information
Leakage,
Fehlerbehandlung,
Konfiguration,
…

Application Security Testing
Tools

• Dynamic App. Security Testing (DAST)
• Static App. Security Testing (SAST)
• Hybride Ansätze

Tools vs. Manuelle Verifikation

Tools liefern keine Schwachstellen, nur Findings. Eine manuelle Verifikation und
Bewertung ist immer erforderlich!

Quelle: OWASP ASVS 2009

Häufige Vorbehalte

• Zu teuer
• Viele False Positives (Schwachstellen die keine sind)
• Viele False Negatives (Schwachstellen die nicht gefunden werden)*
• Unzureichende Abdeckung
• Niemand der sie bedienen kann
• Gefährdet die Stabilität meiner Anwendung

* Vadim Okun. Aurelien Delaitre, Paul E. Black , The Second Static Analysis Tool Exposition (SATE), Special
Publication 500-287, Juni 2010, http://samate.nist.gov/docs/NIST_Special_Publication_500-287.pdf

10 Gründe,
warum Tools

trotzdem wichtig sind …

Warum Tools? (1)

1. Anwendungen werden immer größer
– Große Webanwendungen > 100 KLOC
– Ein Security Reviewer schafft im Schnitt 1 KLOC pro

Tag

2. Anwendungen ändern sich laufend
– Agile Entwicklung
– Schnelle Änderungen durch Änderungen im

Deployment
– Laut Whitehat, wurden in 2012 im Schnitt 56

kritische Schwachstellen in Webanwendung
eingebracht.*

– Änderungen von Anwendungen und deren
Einbindung im Betrieb (Web 2.0)

3. Security‐Experten sind teuer und rar

* http://de.slideshare.net/duncant75/whitehat‐security‐website‐security‐statistics‐report‐may‐2013

Warum Tools? (2)

Angriffsfenster eines Angreifers
(365x7x24)

Durchgeführte
Pentest (z.B. 2 x pro Jahr)

4. Tools arbeiten schnell und können kontinuierlich ausgeführt werden

Quelle: OWASP

Warum Tools? (3)

5. Tools können manuelle Analysen deutlich
wirkungsvoller (bzw. überhaupt erst
durchführbar) machen.

6. Mittels Tools lässt sich die Einhaltung
spezifischer Policys / Vorgaben laufend
prüfen.

7. Tools ermöglichen nachvollziehbare,
objektive und standardisierte Analysen.

www.iff.fraunhofer.de

Warum Tools? (3)

8. Tools ermöglichen Nachhaltigkeit und
kontinuierliche Verbesserung.

9. Tools ermöglichen die Ermittlung von
Sicherheitskennzahlen (Metriken, KPIs).

10.Tools lassen sich in andere Tools
integrieren (=> QA)

Limitationen von Tools müssen verstanden,

aber auch Chancen durch deren Einsatz

genutzt werden!

Dynamic Application Security Testing (DAST)
= Tools, die eine laufende Anwendung auf potentielle

Sicherheitsprobleme hin untersuchen

Sicherheitsprobleme, die DAST‐
Tools finden können…

SQL Injection*

XSS*

Known Vuln.

etc.

Error
Handling*

TLS-Config

etc.

Konfigurationsfehler

Sicherheitsanforderungen
Schadcode auf
den eigenen
oder in
dynamisch
eingebundenen
Seiten
(Werbebanner)

Abgelaufene
oder invalide
TLS/SSL-
Zertifikate

Ungültige TLS-Zerts

Malware

Implementierungs-Fehler

Loginversuche

Passwortlänge

Access
Controls

etc.

Testzugänge

SVN-
Dateien

etc.

Deploymentfehler

* Low Hanging Fruits

Pentesting Tools ‐ Burp

Außerdem: OWASP ZAP, Fiddler, (OWASP Webscarab), diverse Browser‐Plugins

Web Security Scanner GUIs
(kommerziell)

 HP WebInspect
 IBM AppScan
 NTSpider
 Accunetix
 Burp

Web Security Scanner
(kostenfrei)

 OWASP ZAP
 w3af
 skipfish
 Nikto / Wikto
 SSLScan / SSL Labs

Mittels ThreadFix
lassen sich aus
Scanner‐
Ergebnissen
Virtual‐Patching‐
Regeln für
ModSecurity
generieren.

OWASP ZAP

 Aktive und Passive Scans
 Sehr aktive Community

(laufende Weiterentwicklung)
 UI und Deamon Mode
 Offenes Design:

– API
– Eigene Add‐Ons
– Eigne Skripte
– Programmaufrufe

Vorsicht vor dem Einsatz auf produktiven Systemen!

DAST as a Service: Veracode

Weiterhin: Whitehat Sentinal, NTOSpider On‐Demand

Comming Next … Bessere Tool
Integration

• SAST – DAST ‐ Integration
• QA‐Tool‐Integration (z.B. Selenium, Unit Tests, QuickTest Pro)
• Browser‐Integration (Plug‐n‐Hack, FF Firebug, Vendor Plugins)

Static Application Security Testing (SAST)
= Tools, die entweder den Sourcecode, Binärcode oder

Bytecode auf potentielle Sicherheitsmängel hin
untersuchen

Sicherheit im SDLC

A
nt

ei
l a

n
D

ef
ec

ts

Coding Unit
Tests

Functional
Tests

Field
Tests

Post
Release

% Defects, die
in Phase erzeugt
werden

% Defects, die in
Phase gefunden
werden

$ Kosten für Korrektur
eines Defects

$25

$16000

$1000

$250
100

Ziel: Defects möglichst früh zu identifizieren!

Caspers Jones, Applied Software Measurement: Global Analysis of Productivity and Quality, 1996

Sicherheitsprobleme, die SAST‐
Tools finden können…

 SQL Injection / XSS
 Buffer Overflows / Race

Conditions
 Unsichere APIs / Aufrufe
 etc.

 Fehlerbehandlung
 Validierung
 Hartkodierte Passw.
 etc.

Konfigurationsfehler

Security Anforderungen

Unautorisierte
Änderung an
sensiblen
Dateien (z.B.
Bibliotheken)

Sensible Änderungen

Implementierungs-Fehler

 Secure Coding Guidelines /
Policies

 Architektur-Contraints
 Etc.

SAST‐Analyseverfahren

Lexikalische Analyse Kontrollflussanalyse Datenflussanalyse

Identifiziert fehlerhaft
freigegebenen Speicher,
unsichere Sequenz von
Funktionsaufrufen, etc.

Dient dem Auffinden von
Fehlern in der
Datenvalidierung

Beispiele
 Hartkod. Passwörter
 Entwicklerkommentare
 Kommentierter Code

Beispiele
 Buffer Overflows
 Race Conditions

Beispiele
 Cross‐site Scripting
 SQL Injection

alloc()

free()
source sink

grep -i -r “exec(” *

Identifizierung verdächtiger
Zeichenketten im Code
(Reguläre Ausdrücke)

Weiterhin: Semantische Analyse, Strukturanalyse, Konfigurationsanalysen

Datenflussanalysen

Datenflussanalyse

Dient dem Auffinden von
Fehlern in der
Datenvalidierung

Beispiele
 Cross‐site Scripting
 SQL Injection

source sink

 Die Datenflussanalyse ist das wichtigste

Analyse‐Verfahren eines SAST‐Tools!

 Die meisten kostenfreien Tools (PMD,

Findbugs, etc.) bieten keine (bzw. nur

eine eingeschränkte)

Datenflussanalyse.

Datenflussanalysen
(aka Taint Analyse)

Class 1

Class 2

Class 4

Class 3

Class 5

Class 6

n = getParam(„x“);

write(n)

Entry
Point
(Web)

Exit
Point
(Web)

Tainted

Tainted

Tainted

Tainted

“><script>

“><script>

Cross‐site Scripting!

Datenflussanalysen
(aka Taint Analyse)

Class 1

Class 2

Class 4

Class 3

encode
HTML()

Class 6

n = getParam(„x“);

write(n)

Entry
Point
(Web)

Exit
Point
(Web)

Tainted

OK

Tainted

OK

kein Cross‐site Scripting!

“><script>

“><script>
Class 5

HP Fortify ‐ Auditworkbench

Checkmarx ‐
Datenflussanalysen

Problem von Source Code
Analysen

Class 1

Class 2

Class 4

Class 3

JAR

Class 6

n = getParam(„x“);

write(n)

Entry
Point
(Web)

Exit
Point
(Web)

Tainted
Tainted

??

Weitere Probleme: Dependency Injection, komplexe Validierungsfunktionen
(z.B. via Regulären Ausdrücken), … Ergebnis: viele False Positives

??

Bytecodeanalysen mit
Veracode

Fortify on Demand (FOD)

www.fortifymyapp.com

SAST‐Deployment: Tools der 1.
Generation

Security
Analyst

Code

Ergebnis-
Bericht

Entwickler

SAST Deployment: Heutige
Integration

Code Repository
(GIT, SVN, TFS, …)

Ticket System

Lokaler Scan‐Server
oder externer Service

(SaaS)

Security
Analyst

Entwickler

Ticket
Ticket

SVN
Checkout

Web GUI
IDE Integration

Web GUI
Webservices

Automatische
Scans

On‐Premise vs. Off‐Premise

On‐Premise
(Lokal intalliert)

Off‐Premise
(Cloud‐Based)

Vs.

SAST Deployment: Heutige
Integration (2)

Code RepositoryBuild Server
(Jenkings, Hudson,

Bamboo, …)

Scan Server /
SaaS

Entwickler

QA

Automatischer
Scan

Review

Custom Rules

Checkmarx

Fortify

Entwickler IDE Integration

Fortify Visual Studio Plugin

Veracode Visual Studio Plugin

Wenige Hersteller, große
Unterschiede

Tools sind unterschiedlich für bestimmte Organisationen /
Anforderungen geeignet und sollten daher immer vor einem

Kauf evaluieren!

 Qualität der Findings / Scan‐Engine (False‐Negatives / ‐Positives)?
 On‐Site oder Off‐Site („Cloud‐Based“)?
 Sourcecode oder Bytecode?
 Integration: Kann das Tool in meine QA / Entwicklung integrieren?
 Unterstützte Sprachen: Werden alle relevanten Technologien (Sprachen,

Frameworks) unterstützt, wenn ja wie vollständig?
 Möglichkeit eigner Scan Policys / Custom Regeln?
 Bedienbarkeit: Wer bedient das Tool (QA, Security Experten, Entwickler),

wie gut lassen damit Analysen durchführen?
 Customizing: Wie viel ist wünschenswert, wieviel handelbar?
 Kosten!
 ….

Fazit

1. Der Einsatz von Tools ist häufig
wichtig (bzw. erforderlich) um die
Sicherheit einer (Web‐)Anwendung zu
gewährleisten.

2. Jedes Tool hat eine individuelle
Eignung und Limitationen, die
Verstanden werden müssen.

3. Ohne entsprechende Prozesse,
Verantwortlichkeiten und Mitarbeiter
die es bedienen können, ist ein (intern
eingesetztes) Tool wertlos.

Fazit

4. Jedes Tool ist nur so gut, wie der, der es
bedient.

5. Jedes Tool kann stets nur eine Ergänzung
zu manueller Verifikation darstellen,
keinen Ersatz!

6. Insbesondere Enterprise SAST Tools
erfordern ein Auswahl‐ und
Einführungsverfahren (Pilot, On Boarding,
etc.).

Fazit

Danke!
Fragen?

