

SELinux, Apache, and SELinux, Apache, and SELinux, Apache, and SELinux, Apache, and
Tomcat Tomcat Tomcat Tomcat –––– A Securely A Securely A Securely A Securely
Implemented Web Implemented Web Implemented Web Implemented Web
Application ServerApplication ServerApplication ServerApplication Server

Version 1.3 as of 8/11/06

Author: Russ McRee

russ@holisticinfosec.org

holisticinfosec.org

Contributors: Eric Sheridan, chcon details

eric.sheridan@owasp.org

Change notes v1.3:

Chcon additions to SELinux configuration post httpd install

Change notes v1.2:

Updated Fedora Core 4 to CentOS 4.3, Apache’s httpd 2.0.52 to 2.0.58, apache-tomcat 5.5.12

to 5.5.17, mod_jk-ap20-1.2.14 to 1.2.15, and mod_security-1.8.7 to modsecurity-apache-

1.9.4.

Added mod_evasive.

Updated links.

Future work:

httpd 2.2 and Jboss

OWASP Papers Program

Table of Contents

Introduction .. 1
Installation .. 2

Listing 1 - RPM removal... 2
Install httpd ... 2

SELinux configuration post httpd install... 3
Add Tomcat user.. 3
Add packages .. 3
Install Tomcat... 4

Configuration.. 5
Configure mod_jk-ap20 ... 5

Listing 2 mod_jk ... 5
httpd.conf including mod_rewrite, mod_security, mod_jk-ap20, and mod_evasive.. 5

mod_rewrite... 5
mod_security.. 5
mod_jk-ap20.. 6
mod_evasive.. 6
SELinux configuration post httpd install (repeated)... 6
Final steps.. 6
Listing 3 - httpd.conf ... 7

User Authentication.. 11
Harden SSH and Modify iptables .. 11
Iptables ... 12

Listing 4 – iptables .. 12
Troubleshooting ... 13
Notes on SSL... 13

Summary.. 14
Acknowledgments.. 14
Resources .. 14

OWASP Papers Program

 1

Introduction

As an enterprise strives to grow its online presence, its exposure to risk grows as Web applications are added. Thus, a
secure as well as highly available Web application server becomes critical to help enterprises mitigate some of that risk.

Although no implementation offers perfect security, administrators can take a number of steps to dramatically improve the
security of their Web app servers.

This paper describes methodology to build a secure Web application server utilizing the benefits of SELinux with a CentOS
4.3 distribution, along with the Apache httpd server and Apache-Tomcat communicating via mod_jk. Additionally, the use of
iptables, mod_rewrite, and mod_security will be discussed.

In this paper, I will not cover SELinux or the modules utilized in detail; those topics are worthy of articles in and of themselves.
Rather, I will present a server that I believe you can be comfortable with for public facing apps (assuming the apps are also
well written).

You may have discovered that the documentation for implementing Apache’s httpd and Tomcat servers is vast, but each
reference typically encompasses individual services rather than implementing them holistically with security at the forefront. I
will strive to describe a start-to-finish process to roll a well-secured Web app server that also offers user authentication and
SSL options through the Apache Web server.

I’ll make some assumptions for brevity’s sake. First, we only have one server, and we’re on a tight budget. Second, CentOS
installations are straightforward and offer little challenge for most Linux users, so I’ll describe only some key points in the
install phase to ensure a more secure implementation. Third, I assume the reader has a reasonable understanding of the
Apache Web server and its available modules, as well as managing iptables, and working with Apache-Tomcat. Finally, I
assume that the basic principles of secure systems administration are also comfortable subject matter.

SELinux is innate in CentOS 4.3 and offers some excellent protections as, according to Wikipedia, “a version of the Linux
kernel and utilities, which contains support for mandatory access controls based on the principle of least privilege. Primarily
developed by the U.S. National Security Agency (NSA) it was released to the open source development community.”

Iptables is also a default offering in CentOS distributions, allowing you to limit network traffic only to those ports and services
you deem entirely necessary.

OWASP Papers Program

 2

Installation

As you begin your installation from CentOS 4.3 media (assuming a clean install rather than an upgrade), follow the
configuration process using default settings or those of your choice until you reach the Installation Type window. It is essential
to choose Custom here. Resume defaults or personal settings until you reach the Firewall Configuration window. In this step,
be certain to choose Enable firewall (default), check Web Server (HTTP, HTTPS) and Remote Login (SSH), and ensure
SELinux is set to Active. You’ll work through two more windows then arrive at the Package Group Selection window. Here
you’ll uncheck all options accept Minimal (very last check box at bottom of list).

The initial intent is to install nothing that is not required except basic OS functionality. You’ll soon see, though, that one of the
drawbacks of most RedHat-based distributions is that, even when the bare minimum is chosen, you will find a plethora of
packages that serve no purpose on a hardened system. Reboot as prompted when the OS installation completes and log
back on as root.

Here’s where we start to clean house. Using rpm, we’ll remove all the clutter that doesn’t belong on a public-facing server.
You’ll note tools for bind, sendmail, printer libraries (cups), and a number of x11 libraries, even though we didn’t install them.
The gathering in Listing 1 can be executed in one fell swoop at the command line, ensuring that you maintain a single space
between each package name. You may find other unnecessary packages that you want to remove, but experiment carefully
and understand the dependencies.

Listing 1 - RPM removal

rpm -e xorg-x11-libs xorg-x11-Mesa-libGL libtiff up2date system-config-mouse bind-utils bind-

libs ypbind yp-tools htmlview pinfo ppp rp-pppoe wvdial cups cups-libs redhat-lsb mdadm

portmap nfs-utils irda-utils isdn4k-utils pcmcia-cs NetworkManager pam_smb dos2unix

At this point, it is best to turn off the sendmail daemon. This is most easily done by editing /etc/sysconfig/sendmail and setting
DAEMON=no. For an extensive methodology review of sendmail security, see:

http://www.deer-un.com/~hal/sysadmin/sendmail.html

Yum (Yellow dog Updater, Modified) will be used for system updates. In a default CentOS installation, the repository it draws
from is /etc/yum.repos.d/CentOS-Base.repo, which in turn can be modified to allow fast, geographically based updates.

I prefer yum from an ease of use perspective because it requires only /etc/yum.conf and the /etc/yum.repos.d directory to
manage packages. Some may note that rollback functionality does not exist in yum, but all indicators show that rollbacks are
obsolesced and are not part of the rpm’s future.

Install httpd

At the time of writing this release of SELinux, Apache, and Tomcat – A Securely Implemented Web Application Server, the
current Apache 2.0 release is 2.0.58. Apache has released 2.2.2 but the 2.2 series indicates differences in modules we’re
using here, that will require more stringent testing than appropriate for this release. Suffice it to say 2.2 will be tested and
described in future releases of this paper.

Installing 2.0.58 from RPMs will require downloading four files, including httpd-2.0.58 itself.

First, execute yum install postgresql-libs. This will answer one of three dependencies the httpd RPM will require.

Then, wget the following from an Apache.org mirror (<mirror> indicates the mirror of your choosing):

http://<mirror>/apache/httpd/binaries/rpm/i386/httpd-2.0.58-1.i386.rpm

OWASP Papers Program

 3

You’ll also need the APR files. Download the 0.9.12 series, as it most closesly matched the CentOS-preferred packages.
1.2.7 is available, but resist temptation until the next release of this paper.

Wget the following:

http://<mirror>/apache/apr/binaries/rpm/i386/apr-0.9.12-1.i386.rpm

http://<mirror>/apache/apr/binaries/rpm/i386/apr-util-0.9.12-1.i386.rpm

As root, cd to your download directory, and enter rpm –Uvh httpd-2.0.58-1.i386.rpm apr-0.9.12-1.i386.rpm apr-util-0.9.12-
1.i386.rpm.

SELinux configuration post httpd install

NOTE: There is one critical step to execute that will ensure mod_security functionality. Execute /usr/sbin/setsebool –P
httpd_disable_trans 1. Mod_security will fail to load properly and httpd will die without this SELinux boolean setting enabled.

chcon

Administrators may run a situation wherein SELinux complains when Apache attempts to serve content not labeled
'httpd_sys_content_t'.

Consider the following commands, per content directory, if they are relevant to your installation:

htdocs: chcon -R -t httpd_sys_content_t htdocs

cgi-bin: chcon -R -t httpd_exec_t cgi-bin

logs: chcon -R -t httpd_log_t logs

Add Tomcat user

At this point, you should build an account under which to run Tomcat. Running a server like Tomcat under root is certainly
unnecessary and not recommended. First, do groupadd <user> where <user> is an account name you choose. Second,
issue useradd <user> -g <user> -d /home/<user>, and third do passwd <user>.

Repeat these steps for a general user for administration. Later, I will show how to harden SSH access, which will prevent ssh
logon as root. Thus, an additional user will be required to su or sudo root commands.

Add packages

The next step is to build a staging directory for packages that you’ll need. As an example, do: mkdir /staging. You’ll need
packages to complete this platform:

1. Apache-Tomcat 5.5.17 from http://tomcat.apache.org/download-55.cgi

2. mod_jk-ap20-1.2.15-1 from http://www.jpackage.org/rpm.php?id=3345

3. mod_security-1.9.4 from http://www.jackal-net.at/tiki-read_article.php?articleId=22

4. mod_evasive will be covered in full on page 5 in the mod_evasive section. A production worthy RPM is not availabe at the
time of writing this release.

5. JRE Version 5 Update 6 from http://java.com/en/download/manual.jsp and select the Linux RPM.

OWASP Papers Program

 4

You can download these rpms on your admin workstation and copy them to CD or USB drive, transfer them over SSH with
gftp or WinSCP, or simply wget them from the server you’re building.

Regardless, ensure they’re all in your staging directory then cd to it.

Install the modules first: rpm -Uvh mod_jk-ap20-1.2.15-1jpp.i386.rpm modsecurity-apache-1.9.4-1.EL4.i386.rpm

Install the JRE: sh jre-1_5_0_06-linux-i586-rpm.bin

This will install the JRE in /usr/java.

Install Tomcat

Finally, install Tomcat. Copy Apache-Tomcat-5.5.17.tar.gz from /staging to /usr/share (or a directory of your choosing):

cp apache-tomcat-5.5.12.tar.gz /usr/share

cd /usr/share

tar -zxvf apache-tomcat-5.5.17.tar.gz

rm -f apache-tomcat-5.5.17.tar.gz

Grant permission to <user> (the Tomcat user you created earlier) to all tomcat directories:

chown -R <user>:<user> /usr/share/jakarta-tomcat-5.5.17 then logout.

Log back in as <user> and vi .bash_profile to make some key changes to the user’s environment variables.

Add :/usr/java/jre1.5.0_06/bin to the PATH reference, add JAVA_HOME=/usr/java/jre1.5.0_06 after the PATH reference, and
add JAVA_HOME to the export reference after PATH. Log out, then back in as <user> and build a couple of quick
convenience scripts.

Next, do mkdir /home/<user>/bin, as it is already referenced in the <user> path, then cd /home/<user>/bin. You’ll make
tcatup and tcatdown here for quick start and stop of the Tomcat server.

Create tcatup with vi tcatup and enter two lines:

cd /usr/share/apache-tomcat-5.5.17/bin

./startup.sh

Tcatdown will be identical with the exception of ./shutdown.sh. Be sure to chmod a+x to make these scripts executable.

The next step is to clean up the default Tomcat installation. Do:

cd /usr/share/apache-tomcat-5.5.17/conf then rename or delete tomcat-users.xml, as it is not required. Delete manager and
host-manager from usr/share/apache-tomcat- 5.5.17/server/webapps. From /usr/share/apache-tomcat-5.5.17/bin, do: rm-rf
*.exe and rm-rf *.bat. No need for Windows files on a Linux server.

Finally, from /usr/share/apache-tomcat-5.5.17/webapps, remove all the example directories such as jsp-examples, balancer,
tomcatdocs, etc., as well as ROOT.

OWASP Papers Program

 5

Configuration

Configure mod_jk-ap20

Mod_jk is next and requires little more that the minimal setup described in Apache’s documentation. You can build far more
complex configurations with help from a plethora of available documentation.

Listing 2 is taken directly from: http://jakarta.apache.org/tomcat/connectors-doc/howto/quick.html

Listing 2 mod_jk

Define 1 real worker using ajp13

worker.list=worker1

Set properties for worker1 (ajp13)

worker.worker1.type=ajp13

worker.worker1.host=localhost

worker.worker1.port=8009

worker.worker1.lbfactor=50

worker.worker1.cachesize=10

worker.worker1.cache_timeout=600

worker.worker1.socket_keepalive=1

worker.worker1.reclycle_timeout=300

Create Listing 2 as workers.properties in /etc/httpd/conf.

httpd.conf including mod_rewrite, mod_security, mod_jk-ap20, and mod_evasive

For a recent implementation similar to what this paper describes, Apache was only used to forward to Tomcat and served no
other Web sites. Therefore, in my httpd.conf, I removed the vast majority of Section 2, including all references to
DocumentRoot and its associated directory, UserDir, DirectoryIndex, Alias, ScriptAlias, WebDAV, Icons, cgi, AddLanguage,
Error (handled by my app), and Proxy. Additionally, I deleted entire LoadModule references for modules I didn’t want loaded,
such as mod_proxy, mod_userdir, etc. We really only have heavy dependencies on modjk, mod_security, mod_auth,
mod_rewrite, and a few others for this implementation. This may all seem a bit draconian, but the intent here is to strip the
entire process down only to that which is explicitly required.

mod_rewrite

You can deter TRACE using mod_rewrite as well. I list mod_rewrite configurations before mod_security in my httpd.conf. See
Listing 3.

mod_security

We’ve finally reached my favorite tool in this server setup, namely mod_security. If you want a great read on mod_security,
see Shreeraj Shah’s article, “Defending Web Services using mod_security”, which says: “ModSecurity is an open source
intrusion detection and prevention engine for Web applications (or a Web application firewall). Operating as an Apache Web
server module or standalone, the purpose of ModSecurity is to increase Web application security, protecting Web
applications from known and unknown attacks.” The benefit of this module is obvious from its description. Imagine filtering
SQL injection or XSS strings right in httpd.conf. I list my mod_security configurations before mod_jk configurations in my
httpd.conf. I put the mod_security section before the mod_jk configurations described in Listing 3.

OWASP Papers Program

 6

The mod_security section in Listing 3 is compiled of various examples and is by no means comprehensive, nor are these the
only options available to you. You can and should experiment with adding SecFilter references for your needs by testing your
site before final deployment using nikto from cirt.net or nessus.

mod_jk-ap20

Included in Listing 3’s httpd.conf is the required mod_jk section.

I’ve commented out loading the module here because you should load it with other modules in the modules section of
httpd.conf. Note that you should load mod_jk before mod_rewrite. Use JkMount to name the directory for the Web app you’ve
placed in /usr/share/apache-tomcat-5.5.17/webapps. Use JkUnMount to prevent enumeration of files you do not want to be
rendered directly. This functionality is only available in mod-jk-1.2.7 or later.

mod_evasive

This liitle gem comes from Jonathan Zdziarski at NuclearElephant.com. The current version is 1.10.1. Jonathon’s site
describes mod_evasive as “an evasive maneuvers module for Apache to provide evasive action in the event of an HTTP
DoS or DDoS attack or brute force attack. It is also designed to be a detection and network management tool, and can be
easily configured to talk to ipchains, firewalls, routers, and etcetera. mod_evasive presently reports abuses via email and
syslog facilities.”

Installation will be slightly tricky in our design, as our server has no compiler installed and no apxs facilities for module
compilation.

I performed the following on an Apache server that included the necessary compilation tools including apxs:

tar –zxvf mod_evasive_1.10.1.tar.gz

cd mod_evasive

apxs –i –a –c mod_evasive20.c

This will install mod_evasive20.so in the default Apache modules directory. This may vary for you, as, in my case, I compiled
the module on a Debian server, which is distinctly different than a RedHat derivative.

Copy mod_evasive20.c from the server you compiled it on to your new CentOS web app server and place it in
/usr/lib/httpd/modules.

Add the following to httpd.conf: LoadModule evasive20_module modules/mod_evasive20.so

The mod_evasive section in Listing 3 is default but quite functional.

SELinux configuration post httpd install (repeated)

NOTE: There is one critical step to execute that will ensure mod_security functionality. Execute /usr/sbin/setsebool –P
httpd_disable_trans 1. Mod_security will fail to load properly and httpd will die without this SELinux boolean setting enabled.

Final steps

Restart httpd: /sbin/service httpd restart

My httpd.conf looks largely as found below. It is a minimalist configuration attempting to refer only to the bare necessities.

OWASP Papers Program

 7

Listing 3 - httpd.conf

Section 1: Global Environment
ServerTokens OS

ServerRoot "/etc/httpd"

PidFile run/httpd.pid

Timeout 120

KeepAlive Off

MaxKeepAliveRequests 100

KeepAliveTimeout 15

Server-Pool Size Regulation (MPM specific)

<IfModule prefork.c>
StartServers 8
MinSpareServers 5
MaxSpareServers 20
ServerLimit 256
MaxClients 256
MaxRequestsPerChild 4000

</IfModule>
worker MPM
<IfModule worker.c>
StartServers 2
MaxClients 150
MinSpareThreads 25

MaxSpareThreads 75
ThreadsPerChild 25
MaxRequestsPerChild 0
</IfModule>

#Listen 12.34.56.78:80
Listen 80

#modules
LoadModule access_module modules/mod_access.so
LoadModule auth_module modules/mod_auth.so
LoadModule log_config_module modules/mod_log_config.so
#LoadModule logio_module modules/mod_logio.so
LoadModule mime_magic_module modules/mod_mime_magic.so
#LoadModule expires_module modules/mod_expires.so

LoadModule deflate_module modules/mod_deflate.so
LoadModule headers_module modules/mod_headers.so
LoadModule usertrack_module modules/mod_usertrack.so
LoadModule setenvif_module modules/mod_setenvif.so
LoadModule mime_module modules/mod_mime.so
#LoadModule info_module modules/mod_info.so

LoadModule jk_module modules/mod_jk.so
LoadModule rewrite_module modules/mod_rewrite.so

OWASP Papers Program

 8

LoadModule security_module modules/mod_security.so
LoadModule evasive20_module modules/mod_evasive20.so
LoadModule cache_module modules/mod_cache.so
LoadModule file_cache_module modules/mod_file_cache.so

LoadModule mem_cache_module modules/mod_mem_cache.so

Load config files from the config directory "/etc/httpd/conf.d".

Include conf.d/*.conf

User/Group:

User apache
Group apache
Section 2: 'Main' server configuration
ServerAdmin:
ServerAdmin <your email address>

ServerName <your server name>
UseCanonicalName
UseCanonicalName Off

DocumentRoot "/var/www/html"
AccessFileName .htaccess

The following lines prevent .htaccess and .htpasswd files from being
viewed by Web clients.

#<Files ~ "^\.ht">
Order allow,deny
Deny from all
#</Files>

TypesConfig describes where the mime.types file (or equivalent) is
to be found.

TypesConfig /etc/mime.types

DefaultType text/plain

The mod_mime_magic module allows the server to use various hints from the
contents of the file itself to determine its type. The MIMEMagicFile
directive tells the module where the hint definitions are located.

<IfModule mod_mime_magic.c>

MIMEMagicFile /usr/share/magic.mime
 MIMEMagicFile conf/magic
</IfModule>

HostnameLookups:
HostnameLookups On
ErrorLog:

ErrorLog logs/error_log

LogLevel:
LogLevel warn

The following directives define some format nicknames for use with

OWASP Papers Program

 9

a CustomLog directive (see below).

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
LogFormat "%h %l %u %t \"%r\" %>s %b" common

LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent
For a single logfile with access, agent, and referer information
(Combined Logfile Format), use the following directive:

CustomLog logs/access_log combined

ServerSignature Off

AddDefaultCharset UTF-8
If the AddEncoding directives above are commented-out, then you
probably should define those extensions to indicate media types:

AddType application/x-compress .Z
AddType application/x-gzip .gz .tgz
The following directives modify normal HTTP response behavior to
handle known problems with browser implementations.

BrowserMatch "Mozilla/2" nokeepalive

BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-1.0
BrowserMatch "RealPlayer 4\.0" force-response-1.0
BrowserMatch "Java/1\.0" force-response-1.0
BrowserMatch "JDK/1\.0" force-response-1.0

########################
mod_rewrite config #

########################
RewriteEngine on
Optional debug directives
RewriteLog logs/mod_rewrite.log
RewriteLogLevel 1
RewriteCond %{REQUEST_METHOD} ^TRACE

RewriteRule .* - [F]

#########################
Mod_security config #
#########################
<IfModule mod_security.c>
Turn the filtering engine On or Off

SecFilterEngine On
SecFilterDefaultAction "deny,log,status:500"
SecFilterScanPOST On
Make sure that URL encoding is valid
SecFilterCheckURLEncoding On
SecFilterCheckCookieFormat On
Unicode encoding check

SecFilterCheckUnicodeEncoding On
Only allow bytes from this range
SecFilterForceByteRange 1 255
Only log suspicious requests
SecAuditEngine RelevantOnly
The name of the audit log file

OWASP Papers Program

 10

#SecAuditLog logs/audit_log
SecFilterSelective REQUEST_METHOD "!^GET$" chain
SecFilterSelective HTTP_Content-Type "!(^$|^application/x-www-form-
urlencoded$|^multipart/form-data)"

SecFilterSelective REQUEST_METHOD "^POST$" chain
SecFilterSelective HTTP_Content-Length "^$"
SecFilterSelective HTTP_Transfer-Encoding "!^$"
Prevent path traversal (..) attacks
SecFilter "\.\./"
Weaker XSS protection but allows common HTML tags
SecFilter "<(|\n)*script"

SecFilter "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
Prevent XSS atacks (HTML/Javascript injection)
SecFilter "<(.|\n)+>"
SecFilter "/\"><img\x20src=\"javascript:alert(document.domain)\">"
Crude filters to prevent SQL injection attacks
SecFilter "delete[[:space:]]+from"

SecFilter "insert[[:space:]]+into"
SecFilter "select.+from"
Require HTTP_USER_AGENT and HTTP_HOST headers
SecFilterSelective "HTTP_USER_AGENT|HTTP_HOST" "^$"
</IfModule>

######################

Mod_evasive config #
######################

#LoadModule evasive20_module modules/mod_evasive20.so #Loaded in modules section
<IfModule mod_evasive20.c>
 DOSHashTableSize 3097
 DOSPageCount 2

 DOSSiteCount 50
 DOSPageInterval 1
 DOSSiteInterval 1
 DOSBlockingPeriod 10
</IfModule>
#Optionally you can also add the following directives:

DOSEmailNotify you@yourdomain.com
DOSSystemCommand "su - someuser -c '/sbin/... %s ...'"
 DOSLogDir "/var/log/mod_evasive"

########################
Mod_jk Configuration #
########################

mod_jk configuration
#LoadModule jk_module modules/mod_jk.so #Loaded in modules section
Where to find workers.properties
JkWorkersFile /etc/httpd/conf/workers.properties
Where to put jk logs
JkLogFile /var/log/httpd/mod_jk.log
Set the jk log level [debug/error/info]

JkLogLevel info
Select the log format
JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "
JkOptions indicate to send SSL KEY SIZE,
JkOptions +ForwardKeySize +ForwardURICompat -ForwardDirectories
JkRequestLogFormat set the request format

OWASP Papers Program

 11

JkRequestLogFormat "%w %V %T"
Send everything for context /<your app> to worker named worker1 (ajp13)
JkMount /<your app> worker1
JkMount /<your app>/* worker1

JkUnMount /<your app>/*.jsp worker1
JkUnMount /<your app>/*.js worker1
JkUnMount /<your app>/*.xml worker1
JkUnMount /<your app>/*.xslt worker1
JkUnMount /<your app>/*.html worker1
JkUnMount /<your app>/*.cgi worker1
JkUnMount /<your app>/*.txt worker1

#<Location /<your app>>
#AuthType Basic
#AuthName "Authorized Users Only"
#AuthUserFile /usr/share/access/.authenticated
#require valid-user

#</Location>

Section 3: Virtual Hosts

VirtualHost

User Authentication

It seems that mod-jk with Apache and Tomcat requires utilizing Apache-based user authentication. There are additionally
confusing search references that indicate .htaccess (mod_auth) will not work with mod_jk. The following works quite
successfully, however. As root, do:

mkdir /usr/share/access

Following the htpasswd command syntax, issue:

htpasswd -c /usr/share/access/.authenticated <username> to create .authenticated.

To add users after the initial file creation, issue:

htpasswd /usr/share/access/.authenticated <username2>

You can build on this with digest authentication or LDAP, but for our purposes we’ll keep it simple. See the Authenticate
Users entry right before Section 3 in httpd.conf (see Listing 3).

Restart the Web server with service httpd restart and start a new browser session. You should be prompted for a username
and password. Ensure that principal names are being successfully passed between Apache and Tomcat via mod_jk. For
mod_jk, tomcatAuthentication="false" should be present in the <Ajp13Connector> configuration element in
/usr/share/apachetomcat-5.5.12/conf/server.xml to ensure that the user’s identity is passed from Apache to the servlet
environment.

Harden SSH and Modify iptables

This is ideally performed last, after configuration is complete, because you might be building via ssh and initially want to
establish a root shell without using su or sudo. You should also make these changes logged into the server at the local
console, rather than remotely as you will need to modify your iptables configuration. <your port> represents an unused port
number of your choosing. Assuming you allow only port 80 or 443 to your server in your DMZ, you’ll likely only use SSH over
the port you assign from your internal network.

OWASP Papers Program

 12

Edit /etc/ssh/sshd-conf:

1. Uncomment Protocol 2 (accepts ssh2 only).

2. Uncomment Port 22 and change 22 to <your port> (modifies the ssh port for obfuscation purposes).

3. Uncomment LoginGraceTime.

4. Uncomment PermitRootLogin and change yes to no (prevents attempts to remotely brute-force the server as root). If root
is needed while administering via ssh, utilize su or sudo.

5. Uncomment StrictModes.

6. Uncomment MaxAuthTries and change 6 to 3 (limits logon attempts to 3).

Iptables

Iptables, as configured automatically during the OS setup, is set to allow traffic over port 80 and the default SSH port 22.

First, cd /etc/sysconfig/iptables and vi iptables.

Be sure to delete the following as they are undesirable entries typical to the default installation:

-A RH-Firewall-1-INPUT -p 50 -j ACCEPT
-A RH-Firewall-1-INPUT -p 51 -j ACCEPT

-A RH-Firewall-1-INPUT -p udp --dport 5353 -d 224.0.0.251 -j ACCEPT
-A RH-Firewall-1-INPUT -p udp -m udp --dport 631 -j ACCEPT

Iptables must be modified to allow <your port> rather than 22:

Edit the line allowing 22 to <your port>; save and exit. Then issue

service iptables restart.

Listing 4 offers an example.

Listing 4 – iptables

Manual customization of this file is not recommended.

*filter

:INPUT ACCEPT [0:0]

:FORWARD ACCEPT [0:0]

:OUTPUT ACCEPT [0:0]

:RH-Firewall-1-INPUT - [0:0]

-A INPUT -j RH-Firewall-1-INPUT

-A FORWARD -j RH-Firewall-1-INPUT

-A RH-Firewall-1-INPUT -i lo -j ACCEPT

-A RH-Firewall-1-INPUT -p icmp --icmp-type echo-request -j ACCEPT

-A RH-Firewall-1-INPUT -p icmp --icmp-type echo-reply -j ACCEPT

-A RH-Firewall-1-INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

-A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport 80 -j ACCEPT

-A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport <your port> -j ACCEPT

-A RH-Firewall-1-INPUT -j REJECT --reject-with icmp-host-prohibited

COMMIT

OWASP Papers Program

 13

Troubleshooting

If you’re having trouble pulling up your Web app through Apache after this, consider the following:

• SELinux policies can factor in the server’s availability. As root, turn off SELinux policy enforcement by issuing: setenforce 0.

• setenforce 1 will restart SELinux enforcement. The status of SELinux enforcement can be checked by issuing: sestatus |
grep -i mode.

• Don’t forget to issue /usr/sbin/setsebool –P httpd_disable_trans 1 if httpd is hanging on mod_security.

• Iptables might factor as well. To be sure your iptables rules aren’t working against you, issue: service iptables stop.

• Check /etc/sysconfig/iptables to see what may be the cause. If it seems as if file permissions issues are causing problems,
issue the following:

chmod -R 755 /usr/share/apache-tomcat-5.5.17

Reduce these rights after you’ve solved the problem and retest.

Also issue:

chown -R tomcat:tomcat /usr/share/apache-tomcat-5.5.17

Notes on SSL

As you’ve probably spent a good deal of time with Apache, you are likely capable of configuring SSL. However, if not, you
can do so by following Apache’s documents or those at: http://www.linux-sxs.org/internet_serving/apache2.html

OWASP Papers Program

 14

Summary

This paper hasn’t really blazed any new trails; I’ve simply merged those blazed previously. I have shown, however, how to
build a server that provides some sense of comfort in a savage environment.

In utilizing SELinux, deploying key Apache modules, activating iptables, removing unnecessary fluff from the OS and our
configurations, and applying some basic good sense, I’ve presented steps that can be taken to provide Web applications with
a safe home. It is my hope that your Web apps live a long and peaceful life. Just remember to check the code, too, and test,
test, test.

Acknowledgments

Thanks to Ken Van Eyk for his extensive Java knowledge and for driving the project that led to this paper.

Thanks to the SMC team and my family for their endless support.

Resources

Apache HTTP server — http://httpd.apache.org/
Apache Portable Runtime – http://apr.apache.org/
CentOS — http://centos.org/
Modsecurity — http://modsecurity.org
SELinux — http://www.nsa.gov/selinux/index.cfm
Shah, Shreeraj. “Defending Web Services using mod_security” —

http://www.infosecwriters.com/text_resources/pdf/Defending-web-services.pdf
Tomcat — http://tomcat.apache.org/

