
Code Review: Prinzipien und
Grenzen

Dr. Bruce Sams
OPTIMAbit GmbH

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

OWASP

http://www.owasp.org

Dr. Bruce Sams
OPTIMAbit GmbH

07.11.2012

Explain what kind of problems a review can
and cannot identify

 Discuss the practical limits of code review

 Discuss when a review should be performed
and by whom

Not a product based discussion, but will use
FindBugs as an example, as it is opensource
and free.

AgendaAgenda

OWASP

Explain what kind of problems a review can
and cannot identify

 Discuss the practical limits of code review

 Discuss when a review should be performed
and by whom

Not a product based discussion, but will use
FindBugs as an example, as it is opensource
and free.

 Code review is the complete
process of searching for problems in
code and reporting them or
integrating into the secure SDLC

 Code analysis is the detection of
problems in code.

 Static code analysis is performed
using tools or by humans

 Tools and humans both have
limits: what are they in this context?

Code review in context of the secure SDLCCode review in context of the secure SDLC
Code review is a process

OWASP

 Code review is the complete
process of searching for problems in
code and reporting them or
integrating into the secure SDLC

 Code analysis is the detection of
problems in code.

 Static code analysis is performed
using tools or by humans

 Tools and humans both have
limits: what are they in this context?

Problem CategoriesProblem Categories

Category Examples Difficulty Strategy
Conventions naming, formatting 1 •Patterns

Structure cyclomatic complexity,
affine/afferent binding,
package dependencies, etc.

2 •Patterns

OWASP

Implemen-
tation

null pointer, endless loop,
unreachable code, dangerous
API calls

2 - 4 •Patterns
•Stack Analysis

Security Authorization, authorization,
url encoding, injection,
sessions, configuration

4 - 5 •Patterns
•Stack Analysis
•Data Flow
•Business Logic

OWASP

SOME EXAMPLE CODE
PROBLEMS

Some Simple Examples

Null Pointer Exception
String s = null;

if(s != null || s.length() > 0) //evaluate s.length()

if(s == null | s.equals("")) //evaluate s.equals()

Little Bug Patterns

int x = 1;

int y = x<<32; //bit shift more than 31 places

OWASP

Null Pointer Exception
String s = null;

if(s != null || s.length() > 0) //evaluate s.length()

if(s == null | s.equals("")) //evaluate s.equals()

Little Bug Patterns

int x = 1;

int y = x<<32; //bit shift more than 31 places

Some Simple Examples

Bad/Incorrect Method Invocation

String s = "hello "; //extra white space

s.trim();

someMethod(s); //should use s = s.trim()

s = s.trim();

OWASP

Bad/Incorrect Method Invocation

String s = "hello "; //extra white space

s.trim();

someMethod(s); //should use s = s.trim()

s = s.trim();

 False negative (FN): Non-
detection of an existing
problem

 False positive (FP): Detection
of a „problem“ that is not
really a problem

 True positive (TP): Detection
of a real problem.

 Flagged Non-Conformity
(FNC): Indication that a
problem might exist at a given
code location.

 Most FNCs are the result of
turning on too many filters in a
tool (e.g. implement
Serializable in Java).

 This can lead to thousands of
FNCs:

FNC/TP >= 1000 !

What is reality?What is reality?

OWASP

 False negative (FN): Non-
detection of an existing
problem

 False positive (FP): Detection
of a „problem“ that is not
really a problem

 True positive (TP): Detection
of a real problem.

 Flagged Non-Conformity
(FNC): Indication that a
problem might exist at a given
code location.

 Most FNCs are the result of
turning on too many filters in a
tool (e.g. implement
Serializable in Java).

 This can lead to thousands of
FNCs:

FNC/TP >= 1000 !

False/True Positive?: Simple Example

int getLength(int i) {

String s = null;

switch (i) {

case 1:

s = "hello";

break;

case 2:

s = "goodbye";

break;

}

return s.length(); //NullPointerException?

}

OWASP

int getLength(int i) {

String s = null;

switch (i) {

case 1:

s = "hello";

break;

case 2:

s = "goodbye";

break;

}

return s.length(); //NullPointerException?

}

False Negative: Pointer Complexity

String s1 = request.getParameter("name");

StringBuffer b1 = new StringBuffer();

StringBuffer b2 = new StringBuffer();

//Do something here . . .

b1.append(s1);

String s1 = b1.toString();

String s2 = b2.toString();

Question: is s2 safe to use?

StringBuffer

StringBuffer

b1

b2

OWASP

String s1 = request.getParameter("name");

StringBuffer b1 = new StringBuffer();

StringBuffer b2 = new StringBuffer();

//Do something here . . .

b1.append(s1);

String s1 = b1.toString();

String s2 = b2.toString();

Question: is s2 safe to use?

StringBuffer

StringBuffer

StringBuffer

b1

b2

Further Issues and Complications

Maps and containers are generally difficult to handle.

String name = request.getParameter("user");

map.put("USER", name);

map.put("USER", someOtherString);

map.get("USER"); // tainted? Complete Map?

OWASP

Maps and containers are generally difficult to handle.

String name = request.getParameter("user");

map.put("USER", name);

map.put("USER", someOtherString);

map.get("USER"); // tainted? Complete Map?

Dynamic Class Loading

Dynamic class loading and reflection complicates knowing which
classes will be instantiated at runtime.

String myClass = request.getParameter("MyClass");

Class class = Class.forName(myClass);

Object o = class.newInstance();

Pointer uncertainties add to the reflection problem (e.g., suppose the
className String comes from a Map)

OWASP

Dynamic class loading and reflection complicates knowing which
classes will be instantiated at runtime.

String myClass = request.getParameter("MyClass");

Class class = Class.forName(myClass);

Object o = class.newInstance();

Pointer uncertainties add to the reflection problem (e.g., suppose the
className String comes from a Map)

False Negative: Authentication Logic

String userType = request.getParameter("type");

if (userType.equals("NormalUser")){

setUserPermisions("Normal_Permissions");

} else {

setUserPermissions("Admin_Permissions");

}

How can a tool understand the business logic?

How can a tool interpret the Permission Strings?

OWASP

String userType = request.getParameter("type");

if (userType.equals("NormalUser")){

setUserPermisions("Normal_Permissions");

} else {

setUserPermissions("Admin_Permissions");

}

How can a tool understand the business logic?

How can a tool interpret the Permission Strings?

OWASP

DATA FLOW ANALYSIS

Tracing Tainted Data

Untrustworthy data is „Tainted“
An application‘s call graph can be

large and difficult to model:
10 steps with 10 branches gives ~

1010 nodes.
A 1KB memory per node, a full

model requires 1013 Bytes = 104

GB RAM.
Hard to solve the general problem

completely.

S
e
r
v
l
e
t
.
g
e
t
P
a
r
a
m
e
t
e
r
(
"
n
a
m
e
"
)

S
t
r
i
n
g
.
s
u
b
s
t
r
i
n
g
(
)

OWASP

Untrustworthy data is „Tainted“
An application‘s call graph can be

large and difficult to model:
10 steps with 10 branches gives ~

1010 nodes.
A 1KB memory per node, a full

model requires 1013 Bytes = 104

GB RAM.
Hard to solve the general problem

completely.

S
e
r
v
l
e
t
.
g
e
t
P
a
r
a
m
e
t
e
r
(
"
n
a
m
e
"
)

S
t
r
i
n
g
.
s
u
b
s
t
r
i
n
g
(
)

Source/Sink Example: SQL Injection

String s = request.getParameter("name");

Connection connection = …;
String q = "'SELECT * FROM Users WHERE NAME ='" + s +

"'";

connection.executeQuery(q);

 Source = Manipulated Information in Request

name = xxx' OR 1 = 1;--

 Sink = executeQuery

OWASP

String s = request.getParameter("name");

Connection connection = …;
String q = "'SELECT * FROM Users WHERE NAME ='" + s +

"'";

connection.executeQuery(q);

 Source = Manipulated Information in Request

name = xxx' OR 1 = 1;--

 Sink = executeQuery

Tracing Tainted Information

S
e
r
v
l
e
t
.
g
e
t
P
a
r
a
m
e
t
e
r
(
"
n
a
m
e
"
)

Validator

S
t
r
i
n
g
.
s
u
b
s
t
r
i
n
g
(
)

OWASP

S
e
r
v
l
e
t
.
g
e
t
P
a
r
a
m
e
t
e
r
(
"
n
a
m
e
"
)

Statement.execute (…)

S
t
r
i
n
g
.
s
u
b
s
t
r
i
n
g
(
)

OWASP

FINDBUGS EXTENSIONS FOR
SECURITY ANALYSIS

 31 bug patterns from “CERT
Oracle Secure Coding
Standard for Java”

• MSC01-J. Do not use insecure or
weak cryptographic algorithms

• MET04-J. Ensure that constructors
do not call overridable methods

• SER10-J. Do not serialize direct
handles to system resources

• . . .

 5 further common bug patterns

• SQL Injection

• HTTP Response Splitting

• Command Injection

• . . .

New FindBugs detectors to improve reviewNew FindBugs detectors to improve review

Focus on security issues

OWASP

 31 bug patterns from “CERT
Oracle Secure Coding
Standard for Java”

• MSC01-J. Do not use insecure or
weak cryptographic algorithms

• MET04-J. Ensure that constructors
do not call overridable methods

• SER10-J. Do not serialize direct
handles to system resources

• . . .

 5 further common bug patterns

• SQL Injection

• HTTP Response Splitting

• Command Injection

• . . .

FindBugs Detector Hierachy

FindBugs

+ Easily extensible
+ OpenSource

− Only Java
− Weak Taint Tracking

OWASP

FindBugs

+ Easily extensible
+ OpenSource

− Only Java
− Weak Taint Tracking

• 3 Installations:

• FindBugs without Plugins

• FindBugs + fb-contrib

• FindBugs + OPTIMAbit
detectors

• OPTIMAbit detectors:

• XPath Injection

• Command Injection

• Insecure Cryptography

Analyse WebGoat with OPTIMAbit DetectorsAnalyse WebGoat with OPTIMAbit Detectors

More bugs, but also more false positives
Installation Problem

Types
Detected

True
Positives

False
Positives

No Plugins 3 15 0

OWASP

• 3 Installations:

• FindBugs without Plugins

• FindBugs + fb-contrib

• FindBugs + OPTIMAbit
detectors

• OPTIMAbit detectors:

• XPath Injection

• Command Injection

• Insecure Cryptography

fb-contrib 4 20 0

OPTIMAbit
Detectors

8 117 16

SQL Injection: 14

HTTP Response Splitting: 2

 11 configuration issues in
web.xml
• Custom exception pages

• Session timeout

• HTTP Methods

• . . .

 8 configuration issues in
Spring

• Password Hashing

• Sichere LDAP-Kommunikation

• Method security

• . . .

Scan config files for security issuesScan config files for security issues

Scanner knows about some frameworks

OWASP

 11 configuration issues in
web.xml
• Custom exception pages

• Session timeout

• HTTP Methods

• . . .

 8 configuration issues in
Spring

• Password Hashing

• Sichere LDAP-Kommunikation

• Method security

• . . .

Practical issues in selecting a toolPractical issues in selecting a tool
Topic Comment

Support for multiple
Languages

•Java/C#: very good
•Objective C, JavaScript, PHP: weak
•COBOL, PL1, XSLT: effectively nonexistent

Analyze source and/or
binaries

•Binaries need compileable project
•Compiled active pages can be linked to code.

OWASP

IDE Integration
Build Management

•Nightly build
•Ticketing
•Code markers

Framework Support •Data flow analysis
•Input methods, validators for frameworks.
•Dependency injection

OWASP

CODE REVIEW AS A PROCESS

Scenario: Local Review (Worst Case)

- Developers are
overloaded with
tool output

- No central learning
or feedback

- No independent
review

- Unstructured

IDE

Developers

Code

Analysis
Tool

Analysis

OWASP

- Developers are
overloaded with
tool output

- No central learning
or feedback

- No independent
review

- Unstructured

Quality
Rules

Analysis
Tool

Requirem
ents

Scenario: Expert Review Team

+ Developers see no
false positives

+ Central learning &
feedback

+ Independent review

+ Structured

Code

Developers

Tickets &
Feedback

Review &
Analysis

Development

OWASP

+ Developers see no
false positives

+ Central learning &
feedback

+ Independent review

+ Structured

Analyse
Tool

Review Team

Tickets &
Feedback

Review &
Analysis

Update, Filter,
Management

 Select useful metrics:
Errors/KLOC, Total Errors,
Security Errors.

 Metrics are good for tracking
individual projects

 Metrics are hard to compare
across frameworks, languages,
analysis tools and application
types.

Metrics for code reviewMetrics for code review
Metrics are useful if correctly chosen

OWASP

 Select useful metrics:
Errors/KLOC, Total Errors,
Security Errors.

 Metrics are good for tracking
individual projects

 Metrics are hard to compare
across frameworks, languages,
analysis tools and application
types.

Conclusions

Static analysis is a powerful method for
examining code that can detect many problems
that human reviewers would not find.

The quality of the results depends strongly on the
tools, code type and reviewer.

Setting up an effective code review process at the
enterprise level requires experience and time.

OWASP

Static analysis is a powerful method for
examining code that can detect many problems
that human reviewers would not find.

The quality of the results depends strongly on the
tools, code type and reviewer.

Setting up an effective code review process at the
enterprise level requires experience and time.

Vielen Dank

für Ihre Aufmerksamkeit

Vielen Dank

für Ihre Aufmerksamkeit

