Code Review: Prinzipien und
Grenzen

Dr. Bruce Sams
OPTIMADbiIt GmbH

OWASP

07.11.2012

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation

http://www.owasp.org

Agenda

m Explain what kind of problems a review can
and cannot identify

B Discuss the practical limits of code review

m Discuss when a review should be performed
and by whom

m Not a product based discussion, but will use
FindBugs as an example, as it is opensource
and free.

mm -
ﬁmm”l”ﬂ O\

Code review in context of the secure SDLC

Code review is a process

= Code review is the complete TeeTHen s
process of searching for problems in Operational 1~ Policy &
code and reporting them or e NI e
iIntegrating into the secure SDLC Hadeng '-ﬁ.r] <\ Guidance

| /!
Vulnarability |/

» Code analysis is the detection of ansgement |1\
problems in code. "

\ | Threat
Gt
[Assessment

Secur'rty'Tes.ﬁng]"f\f‘.-. - / ';:\.‘jﬁmsj;:_ i:_lhéms
= Static code analysis is performed —Y X one
using tools or by humans e

* Tools and humans both have
limits: what are they in this context?

OWASP O

Problem Categories

Category Examples Difficulty | Strategy
Conventions naming, formatting 1 ePatterns
Structure cyclomatic complexity, 2 *Patterns

affine/afferent binding,
package dependencies, etc.

Implemen- null pointer, endless loop, 2-4 ePatterns

tation unreachable code, dangerous «Stack Analysis
API calls

Security Authorization, authorization, 4-5 ePatterns
url encoding, injection, «Stack Analysis
sessions, configuration eData Flow

*Business Logic

OWASP O

SOME EXAMPLE CODE
PROBLEMS

Some Simple Examples

Null Pointer Exception
String s = null;

if(s '= null || s.length() > 0) //evaluate s.length()
if(s == null | s.equals("")) //evaluate s.equals()

Little Bug Patterns
intx = 1;

int y = x<<32; //bit shift more than 31 places

Some Simple Examples

Bad/Incorrect Method Invocation

String s = "hello "; //extra white space
s.trim();

someMethod(s); //should use s = s.trim()

s = s.trim();

What is reality?

m False negative (FN): Non-
detection of an existing
problem

B Most FNCs are the result of
turning on too many filters in a
tool (e.g. implement

. . Serializable in Java).

B False positive (FP): Detection

of a ,problem” that is not B This can lead to thousands of
really a problem ENCs:

B True positive (TP): Detection ENC/TP >= 1000 !
of a real problem. |

B Flagged Non-Conformity
(FNC): Indication that a
problem might exist at a given
code location.

False/True Positive?: Simple Example

int getLength(int i) {
String s = null;
switch (i) {
case 1:
s = "hello";
break;
case 2:
s = "goodbye";
break;

}

return s.length(); //NullPointerException?

}

False Negative: Pointer Complexity

String s1 = request.getParameter(“name");

StringBuffer b1l = new StringBuffer();

StringBuffer b2 = new StringBuffer(); bl —~

StringBuffer

b2
//Do something here . .. I ngBuf f er

bl.append(sl);

bl
String s1 = b1.toString(); 7‘ St ri ngBuf f er
String s2 = b2.toString(); b2

StringBuffer

Question: is s2 safe to use?

OWASP 0

Further Issues and Complications
Maps and containers are generally difficult to handle.

String name = request.getParameter(*'user");
map.put("USER", name);
map.put("USER", someOtherString);

map.get("USER"); // tainted? Complete Map?

Dynamic Class Loading

Dynamic class loading and reflection complicates knowing which
classes will be instantiated at runtime.

String myClass = request.getParameter("MyClass");
Class class = Class.forName(myClass);

Object 0 = class.newlInstance();

Pointer uncertainties add to the reflection problem (e.g., suppose the
className String comes from a Map)

False Negative: Authentication Logic

String userType = request.getParameter("type");
If (userType.equals("NormalUser")){
setUserPermisions("Normal_Permissions");

} else {

setUserPermissions("Admin_Permissions");

}

How can a tool understand the business logic?

How can a tool interpret the Permission Strings?

DATA FLOW ANALYSIS

Tracing Tainted Data

Untrustworthy data is ,, Tainted*

An application‘s call graph can be
large and difficult to model:

» 10 steps with 10 branches gives ~
1010 nodes.

» A 1KB memory per node, a full
model requires 103 Bytes = 104
GB RAM.

» Hard to solve the general problem
completely.

(,aueu,) s 1aue led 19b 19 |AJSS

%

O O

()Bu 111sqns *Bu 111

Source/Sink Example: SQL Injection

String s = request. get Paraneter ("nane");
Connecti on connection = ..;

String q = "' SELECT * FROM Users WHERE NAME ="" + s +

connecti on. executeQuery(q);

B Source = Manipulated Information in Request
nane = xxx' OR1 =1;--

B Sink = executeQuery

Tracing Tainted Information

oo
O

Validator O

(.,aueu,) s 1aue ted 18b " 18 |A 1SS Q
()bu111sqgns ‘Bu 111

e (") 93Nn29Xxa-3UBWIIEIS

OWASP

FINDBUGS EXTENSIONS FOR
SECURITY ANALYSIS

OWASP 0

New FindBugs detectors to improve review

Focus on security issues

m 31 bug patterns from “CERT m 5 further common bug patterns
Oracle Secure Coding
Standard for Java”

SQL Injection

HTTP Response Splitting
e MSCO1-J. Do not use insecure or

weak cryptographic algorithms

Command Injection

e METO04-]. Ensure that constructors .
do not call overridable methods

 SER10-J. Do not serialize direct
handles to system resources

FindBugs Detector Hierachy

winferface:

Fi ndBugS Deleciu

+ visitClAassnnntat

. . + reportd
+ Easily extensible i
+ OpenSource o———

buildinstractionF low()
getlwokedMehodNamel

- Only Java # reporExcapticn)
. . # buildConstaniPooiGen)
— Weak Taint Tracking * cpofBuso

anahzeClassy)

analhzelethad()

anahzalocation
+¥isitClassContexd

+ repont()
mvekeletecior CatchDetector ThrowDetector
analzelLocationd # anahvzelozationd | [# analzelmwocationd
gaalvrelnvocaion, # analyzeCatoh # anaiyszeThrow)

OWASP 0

Analyse WebGoat with OPTIMADIt Detectors

More bugs, but also more false positives

lati _ Installation [Problem True False
* 3 Installations: Types Positives Positives
* FindBugs without Plugins Detected
» FindBugs + fb-contrib No Plugins 3 15 0
* FindBugs + OPTIMADit
detectors fb-contrib 4 20 0
 OPTIMADIt detectors:
OPTIMADit
. 8 117 16
« XPath Injection Detectors
e Command |njeCti0n SQL Injection: 14 /
« Insecure Cryptography HTTP Response Splitting: 2

OWASP 0

Scan config files for security issues

Scanner knows about some frameworks

m 11 configuration issues in
web.xml
« Custom exception pages
e Session timeout
HTTP Methods

B 8 configuration issues in
Spring

o Password Hashlng | : e =2 SR e ks EE -..- L1 + o pAHr -_-:-I: | = H _:I % "
e Sichere LDAP-Kommunikation

* Method security

Practical issues in selecting a tool

Topic Comment
Support for multiple «Java/C#: very good
Languages *Objective C, JavaScript, PHP: weak

*COBOL, PL1, XSLT: effectively nonexistent

Analyze source and/or *Binaries need compileable project

binaries «Compiled active pages can be linked to code.
IDE Integration *Nightly build

Build Management *Ticketing

*Code markers

Framework Support sData flow analysis
Input methods, validators for frameworks.
*Dependency injection

OWASP 0

CODE REVIEW AS A PROCESS

OWASP 0

Scenario: Local Review (Worst Case)

- Developers are
overloaded with

Code

tool output
_ Developers >
- No central learning o o 5
Tey,
or feedback Tesu
_ Analysis

- No independent

review -
- Unstructured :

Quality
Rules

OWASP

o

Scenario: Expert Review Team

+ Developers see no
false positives

+ Central learning &
feedback

+ Independent review

+ Structured

a Development
Developers

Tickets &
Feedback

Update, Filter,
g Management

Review Team

Review &
Analysis

Metrics for code review

Metrics are useful if correctly chosen

= Select useful metrics:
Errors/KLOC, Total Errors,
Security Errors.

= Metrics are good for tracking
individual projects

= Metrics are hard to compare
across frameworks, languages,
analysis tools and application

types.

Conclusions

Static analysis is a powerful method for
examining code that can detect many problems
that human reviewers would not find.

The quality of the results depends strongly on the
tools, code type and reviewer.

Setting up an effective code review process at the
enterprise level requires experience and time.

OWASP 0

Vielen Dank

fur IThre Aufmerksamkeit

