HANDLING OF SECURITY
UIREMENTS IN SOFTWARE

{if(ia) e
tr

DEVELOPMENT LIFECYCLE

3

N}
#{c.applylalg
t _;‘(a,b}{vi‘r c

rge: funct
'(a}’fme):q'fi . d}, 029

,niwva
el)},ual’a(

REPEATING MISTAKES

SECURITY DOCUMENTATION

SECURITY BEHIND DEV PROCESSES AND

TOOLING

APPROACH

ALIGN THE PROCESS

SCALE

KISS

SECURITYRAT

2. Requirements

SecurityRA

| 3. Persist State :
”]
\ 4

Security Mento 4. Create tickets

eam Queues

USE CASES

New assets

Production assets

———AUDIO

CH1SELECT CH2 SELECT
INTL) g INTR)

SINPUT1 e
- T;)
~liveuT2 L

CH1 CH?2
JBAUTO g AUTO
{

DIAL s M(\?(fo D
Vit 4

-~

4

.

INTERNALS

Based on JHipster

Requirement Skeletons

Description

3rd party code is
identified, checked for
security vulnerabilities
and its update
process is defined.

No fundamentally
different roles are
present in the same
application.

More Information~ V¥

Implementation of automated tooling can support
this task:

o https:/ wasp.org/index.php
IOWASP_Dependency_Check (mapping
of dependencies to CVEs)

o https://nodesecurity.io/tools (evaluation of
vulnerable packages for npm)

o http://retirejs.github.io/retire.js/ (JavaScript
libraries with known vulnerabilites)

Example:

o internal employees and external
customers should work on completely
separated systems so that the privilege
escalation probabilitv and impact in case

Motivation~ V¥ Strategy ~ Comment

Secure Architecture

Decrease the security
risk being introduced
by using vulnerable
libraries. Be able to
find out quickly if we're
affected when new
vulnerabilities are
published.

Select ~

Optional Columns

- ion~ W ivation~ ¥ . .
Description More Information Motivation Strategy Comment Select

Secure Architecture

3rd party code is Implementation of automated tooling can support Decrease the security
identified, checked for this task: risk being introduced
security vulnerabilities by using vulnerable

https:/ was /index.pk
and its update Pl st s L . libraries. Be able to
is defined IOWASP_Dependency_Check (mapping
process is defined.

of dependencies to CVEs)

o https://nodesecurity.io/tools (evaluation of
vulnerable packages for npm)

o http://retirejs.github.io/retire.js/ (JavaScript
libraries with known vulnerabilites)

find out quickly if we're
affected when new
vulnerabilities are
published.

No fundamentally Example:
different roles are
present in the same
application.

o internal employees and external
customers should work on completely
separated systems so that the privilege
escalation probabilitv and impact in case

Short
Name

Description

All untrusted
data outputted
to any interface
are properly
escaped for the
particular
context using a
common and
standardized
approach.

Alternatives to Option Columns

JAVA Application~ ¥ Motivation~ W

Output Encoding

These interfaces can include (but are not limited to): Prevent injection attacks,

saL 9-
NoSQL e SQL Injection

Web Services e | DAP Injection
LDAP

Parametrized queries should be used in all cases.
JAVA Application

Example of a prepared statement for SQL queries:

preparedStatement = dbConnection.prepar
eStatement(

(1,)

rs = preparedStatement.executeQuery(

(rs.next()) A
userid = rs.getString(

Strategy ~

Description

3rd party code is
identified, checked for
security vulnerabilities
and its update
process is defined.

No fundamentally
different roles are
present in the same
application.

Status Columns

More Information~ V¥

Implementation of automated tooling can support
this task:

o https:/ wasp.org/index.php
IOWASP_Dependency_Check (mapping
of dependencies to CVEs)

o https://nodesecurity.io/tools (evaluation of
vulnerable packages for npm)

o http://retirejs.github.io/retire.js/ (JavaScript
libraries with known vulnerabilites)

Example:

o internal employees and external
customers should work on completely
separated systems so that the privilege
escalation probabilitv and impact in case

Motivation~ V¥ Strategy ~ Comment

Secure Architecture

Decrease the security
risk being introduced
by using vulnerable
libraries. Be able to
find out quickly if we're
affected when new
vulnerabilities are
published.

Select ~

Implementation Type

Artifact Properties:
Criticality

System Type Select ~

Authentication Select ~

Session Management Select ~

Reachability Select ~

%*

Implementation:

Implementation Type Select ~

Collections

Artifact Properties:
Criticality

System Type Select ~

Authentication Select ~

Session Management Select ~

Reachability Select ~

%*

Implementation:

Implementation Type Select ~

Artifact Settings

Tags

Requirement

Product Manager
Owner

Phase
relevance

Initiation

BlackBox

Documentation Design

Security Mentor

Functional Test

Project Manager

White box

SCRUM Master

AUTHENTICATION

Own authentication scheme

CAS (Central Authentication Service)

ROLES

Frontend User

User

Admin

JIRA INTEGRATION

Cross Origin Request Sharing

SecurityRAT inherits user‘s rights in JIRA

SECURITYCAT

SecurityRAT

Browser . .
Microservice 1 App QA Instance

Gateway Microservice 2 GitLab

Microservice 3 SonarCube

Cl software

Action with selected ~

b4 Create JIRA tickets

H Create spreadsheet

@ Create slides
Test requirements (BETA)

Test requirements

Please make sure that the selected requirements are testable. Depending on how a requirement is tested, make sure to fill the
necessary fields.

You have selected 9 requirements. 4 Show selected requirements

Application URL http://example.com

SCM URL https://gitlab_url/example_com

Sonarqube Key com.example]

Test results

Alternatively is the result available at https:// Jserviceapi/resource/46 for a week as from now.

Short Confidence
Name Description Result level Message Tool

IvV-08 Buffer overflow attacks are mitigated. SN The test was successful. sonarMS

The system does not output error messages data The test was unsuccessful. Check for sonarMS
that could assist an attacker. the sonarqube vulnerabilities to your
projects with tag(s) error-handling.

3rd party code is identified, checked for security 9 The test was successful. sonariMS
vulnerabilities and its update process is defined. -

Cross-Site Request Forgery attacks are / \) The test was successful. sonarMS
mitigated. =

All untrusted data outputted to any interface are \ ™ C The test was successful. sonariS
properly escaped for the particular context using 4
a common and standardized approach.

FUTURE PLANS

SECURITYRAT 2.0

https://github.com/SecurityRAT/SecurityRAT/wiki/Version-
2.0-Brainstorming

COMMUNITY

Issues

Pull requests

Derived projects

THANK YOU FOR YOUR ATTENTION!
https://securityrat.github.io

dan.kefer@gmail.com

